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Chapter 1

Getting started with AD Model
Builder

This manual describes AD Model Builder, the fastest, most powerful software for rapid
development and fitting of general nonlinear statistical models available. The accompanying
demonstration disk has a number of example programs from various fields including chemical
engineering, natural resource modeling, and financial modeling. As you will see, with a
few statements you can build powerful programs to solve problems that would completely
defeat other modeling environments. The AD Model Builder environment makes it simple
to deal with recurring difficulties in nonlinear modeling, such as restricting the values which
parameters can assume, carrying out the optimization in a stepwise manner, and producing
a report of the estimates of the standard deviations of the parameter estimates. And these
techniques scale up to models with at least 1500 independent parameters on a 120 MH
Pentium PC and more on more powerful platforms. So, if you are interested in a really
powerful environment for nonlinear modeling – read on!

AD Model Builder provides a template-like approach to code generation. Instead of
needing to write all the code for the model the user can employ any ASCII file editor to
simply fill in the template, describing the particular aspects of the model – data, model
parameters, and the fitting criterion to be used. With this approach the specification of
the model is reduced to the absolute minimum number of statements. Reasonable default
behaviour for various aspects of modeling such as the input of data and initial parameters and
reporting of results are provided. Of course it is possible to override this default behaviour to
customize an application when desired. The command line argument -ind NAME followed
by the string NAME changes the default data input file to NAME.

The various concepts embodied in AD Model Builder are introduced in a series of
examples. You should at least skim through each of the examples in the order they appear
so that you will be familiar with the concepts used in the later examples. The examples disk
contains the AD Model Builder template code, the C++ code produced by AD Model Builder
and the executable programs produced by compiling the C++ code. This process of producing
the executable is automated so that the user who doesn’t wish to consider the vagaries of C++

Copyright c© 1993–2000 by Otter Research Ltd 1-1



programming can go from the AD Model Builder template to the compiled executable in one
step. Assuming that the C++ compiler and AD Model Builder and AUTODIF libraries have
been properly installed, then to produce a AD Model Builder executable it is only necessary
to type makeadm root where root.tpl is the name of the ASCII file containing the template
specification. To simplify model development two modes of operation are provided, a safe
mode with bounds checking on all array objects and an optimized mode for fastest execution.

AD Model Builder achieves its high performance levels by employing the AUTODIF
C++ class library. AUTODIF combines an array language with the reverse mode of Au-
tomatic differentiation supplemented with precompiled adjoint code for the derivatives of
common array and matrix operations. However, all of this is completely transparent to the
AD Model Builder user. It is only necessary to provide a simple description of the statistical
model desired and the entire process of fitting the model to data and reporting the results
is taken care of automatically.

Although C++ potentially provides good support for mathematical modeling, the lan-
guage is rather complex – it cannot be learned in a few days. Moreover many features of the
language are not needed for mathematical modeling. A novice user who wishes to build math-
ematical models may have a difficult time deciding which features of the language to learn
and which features can be ignored until later. AD Model Builder is intended to help over-
come these difficulties and to speed up model development. When using AD Model Builder
most of the aspects of C++ programming are hidden from the user. In fact the beginning
user can be almost unaware that C++ underlies the implementation of AD Model Builder.
It is only necessary to be familiar with some of the simpler aspects of C or C++ syntax.

To interpret the results of the statistical analysis AD Model Builder provides simple
methods for calculating the profile likelihood and Markov chain simulation estimates of the
posterior distribution for parameters of interest (Hastings-Metropolis algorithm).

A short description of each example follows.

A very simple example. This is a trivial least squares linear model included simply to
introduce the basics of AD Model Builder.

A simple nonlinear regression model for estimating the parameters describing a von
Bertalanffy growth curve from size-at-age data. AD Model Builder’s robust regression routine
is introduced and used to illustrate how problems caused by “outliers” in the data can be
avoided.

A chemical kinetics problem. A model defined by a system of ordinary differential
equations. The purpose is to estimate the parameters which describe the chemical reaction.

A problem in financial modeling. A Generalized Autoregressive Conditional
Heteroskedasticity or GARCH model is used to attempt to describe the time series of returns
from some market instrument.

A problem in natural resource management. The Schaeffer-Pella-Tomlinson Model for
investigating the response of an exploited fish population is developed and extended to
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include a Bayesian times series treatment of time-varying carrying capacity. This example is
interesting because the model is rather tempermental and several techniques for producing
reliable convergence of the estimation procedure to the correct answer are described. For
one of the data sets over 100 parameters are estimated.

A Simple Fisheries catch-at-age model. These models are used to try and estimate the
exploitation rates etc. in exploited fish populations.

More complex examples are presented in subsequent chapters.

An AD Model Builder template consists of up to nine sections. Six of these sections are
optional. Optional sections are enclosed in brackets [ ]. The optional FUNCTION keyword
defines a subsection of the PROCEDURE SECTION.

DATA SECTION

[INITIALIZATION SECTION]

PARAMETER SECTION

[PRELIMINARY CALCS SECTION]

PROCEDURE SECTION

[FUNCTION]

[REPORT SECTION]

[RUNTIME_SECTION]

[TOP_OF_MAIN_SECTION]

[GLOBALS SECTION]

[BETWEEN PHASES SECTION]

[FINAL SECTION]

The simplest model contains only the three required sections, a DATA SECTION, a
PARAMETER SECTION, and a PROCEDURE SECTION.

To illustrate the method we begin with a simple statistical model which is to estimate the
parameters of a linear relationship of the form

Yi = axi + b for 1 <= i <= n

where xi and Yi are vectors, and a and b are the model parameters which are to be estimated.
The parameters are estimated by the method of least-squares that is we find the values of
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a and b so that the sum of the squared differences between the observed values Yi and the
predicted values axi + b is minimized. That is we want to solve the problem

min
a,b

n∑
i=1

(Yi − axi − b)2

The template for this model is in the file SIMPLE.TPL. To make the model one would
type makeadm simple. The resulting executable for the model is in the file SIMPLE.EXE. The
contents of SIMPLE.TPL are. (Anything following // is a comment.)

DATA_SECTION

init_int nobs // nobs is the number of observations

init_vector Y(1,nobs) // the observed Y values

init_vector x(1,nobs)

PARAMETER_SECTION

init_number a

init_number b

vector pred_Y(1,nobs)

objective_function_value f

PROCEDURE_SECTION

pred_Y=a*x+b; // calculate the predicted Y values

f=regression(Y,pred_Y); // do the regression -- the vector of

// observations goes first

The main requirement is that all keywords must begin in column 1 while the code itself
must be indented.

Roughly speaking, the data consist of the stuff in the real world which you observe and want
to analyze. The data section describes the structure of the data in your model. Data objects
consist of integers (int) and floating point numbers(number), and these can be grouped into
one dimensional (ivector and vector) and two dimensional (imatrix and matrix) arrays.
The “i” in ivector distinguishes a vector of type int from a vector of type number. For
arrays of type number there are currently arrays up to dimension 7.

Some of your data must be read in from somewhere, that is, you need to start with
something. These data objects are referred to as initial objects and are distinguished by
the prefix init, such as init int or init number. All objects prefaced with init in the
DATA SECTION are read in from a data file in the order in which they are declared. The
default file names for various files are derived from the name of the executable program. If
the executable file is named ROOT.EXE then the default input data file name is ROOT.DAT. For
this example the executable file is named SIMPLE.EXE so the default data file is SIMPLE.DAT.
Notice that once an object has been read in, its value is available to be used to describe other
data objects. In this case the value of nobs can be used to define the size of the vectors Y and
x. The next line init vector Y(1,nobs) defines an initial vector object Y whose minimum
valid index is 1, and whose maximum valid index is nobs. This vector object will be read in
next from the data file. The contents of the file SIMPLE.DAT are shown below.
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# number of observations

10

# observed Y values

1.4 4.7 5.1 8.3 9.0 14.5 14.0 13.4 19.2 18

# observed x values

-1 0 1 2 3 4 5 6 7 8

It is possible to put comment lines in the data files. Comment lines must have the character
# in the first column.

It is often useful to have data objects which are not initial. Such objects have their
values calculated from the values of initial data objects. Examples of the use of non initial
data objects are given below.

It is the parameters of your model which provide the analysis of the data (or perhaps more
correctly is the values of these parameters as picked by the fitting criterion for the model
which provide the analysis of the data). The PARAMETER SECTION is used to describe the
structure of the parameters in your model. The description of the model parameters is
similar to that used for the data in the DATA SECTION.

All parameters are floating point numbers (or arrays of floating point numbers.) The
statement init number b defines a floating point number (actually a double). The preface
init means that this is an initial parameter. Initial parameters have two properties which
distinguish them from other model parameters. First, all of the other model parameters are
calculated from the initial parameters. This means that in order to calculate the values of
the model parameters it is first necessary to have values for the initial parameters. A major
difference between initial data objects (which must be read in from a data file) and initial
parameters is that since parameters are estimated in the model it is possible to assign initial
default values to them.

The default file name for the file which contains initial values for the initial model
parameters is ROOT.PIN. If no file named ROOT.PIN is found, default values are supplied for
the initial parameters. (Methods for changing the default values for initial parameters are
described below.) The statement vector pred Y(1,nobs) defines a vector of parameters.
Since it is not prefaced with init the values for this vector will not be read in from a file
or given default values. It is expected that the value of the elements of this vector will be
calculated in terms of other parameters.

The statement objective function value f defines a floating point number (again
actually a double). It will hold the value of the fitting criterion. The parameters of the
model are chosen so that this value is minimized1. Every AD Model Builder template must
include a declaration of an object of type objective function value and this object must
be set equal to a fitting criterion. (Don’t worry, for many models the fitting criterion is
provided for you as in the regression and robust regression fitting criterion functions in
the current and next examples.

1Thus it should be set equal to minus the log-likelihood function if that criterion is used
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The PROCEDURE SECTION contains the actual model calculations. This section contains C++

code and C++ syntax must be obeyed. (Those familiar with C or C++ will notice that the
usual methods for defining and ending a function are not necessary and in fact can not be
used for the routine in the main part of this section.)

Statements must end with a “;” exactly as with C or C++. The “;” is optional in the
DATA SECTION and the PARAMETER SECTION. The code uses AUTODIF’s vector operations
which enable you to avoid writing a lot of code for loops. In the statement pred Y=a*x+b;

the symbol a*x forms the product of the number a and the components of the vector x

while +b adds the value of the number b to this product so that pred Y has the components
axi + b. In the line f=regression(Y,pred Y); the function regression calculates the
log-likelihood function for the regression and assigns this value to the object f which is of
type objective function value. This code generalizes immediately to nonlinear regression
models and can be trivially modified (with the addition of one word) to perform the robust
nonlinear regression discussed in the second example. For the reader who want to know, the
form of the regression function is described in the Appendix.

Note that the vector of observed values goes first. The use of the regression function makes
the purpose of the calculations clearer, and it prepares the way for modifying the routine to
use AD Model Builder’s robust regression function.

NOTE: The use of LOCAL CALCS and its variants in the DATA SECTION and the
PROCEDURE SECTION has greatly reduced the need for the PRELIMINARY CALCS SECTION.

The PRELIMINARY CALCS SECTION as its name implies permits one to do preliminary
calculations with the data before getting into the model proper. Often the input data are
not in a convenient form for doing the analysis and one wants to carry out some calculations
with the input data to put them in a more convenient form. Suppose that the input data
for the simple regression model are in the form

# number of observations

10

# observed Y values observed x values

1.4 -1

4.7 0

5.1 1

8.3 2

9.0 3

14.5 4

14.0 5

13.4 6

19.2 7

18 8

The problem is that the data are in pairs in the form (Yi, xi), so that we can’t read in either
the xi or Yi first. To read in the data in this format we will define a matrix with nobs rows
and 2 columns. The DATA SECTION becomes
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DATA SECTION

init_int nobs

init_matrix Obs(1,nobs,1,2)

vector Y(1,nobs)

vector x(1,nobs)

Notice that since we do not want to read in Y or x these objects are no longer initial objects,
that is their declarations are no longer prefaced with int. The observations will be read
into the initial matrix object Obs so that Y is in the first column of Obs while x is in the
second column. If we don’t want to change the rest of the code the next problem is to get
the first column of Obs into Y and the second column of Obs into x. The following code in
the PRELIMINARY CALCS SECTION will accomplish this objective. It uses the function column

which extracts a column from a matrix object so that it can be put into a vector object.

PRELIMINARY CALCS SECTION

Y=column(Obs,1); // extract the first column

x=column(Obs,2); // extract the second column

This section can be skipped on first reading.

To accomplish the column-wise extraction presented above you would have to know that
AUTODIF provides the column operation. What if you didn’t know that and don’t feel like
reading the manual yet? For those who are familiar with C it is generally possible to use
lower level “C-like” operations to accomplish the same objective as AUTODIF’s array and
matrix operations. In this case the columns of the matrix Obs can also be copied to the
vectors x and Y by using a standard for loop and the following element-wise operations

PRELIMINARY_CALCS_SECTION

for (int i=1;i<=nobs;i++)

{

Y[i]=Obs[i][1];

x[i]=Obs[i][2];

}

Incidentally, the C-like operation [] was used for indexing members of arrays.
AD Model Builder also supports the use of () so that the above code could be written
as

PRELIMINARY_CALCS_SECTION

for (int i=1;i<=nobs;i++)

{

Y(i)=Obs(i,1);

x(i)=Obs(i,2);

}

which may be more readable for some users. Notice that it is also possible to define C

objects like the object of type int i used as the index for the for loop “on the fly” in the
PRELIMINARY CALCS SECTION or the PROCEDURE SECTION.
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By default AD Model Builder produces three or more files ROOT.PAR which contains the
parameter estimates in ASCII format, ROOT.BAR which is the parameter estimates in a
binary file format, and ROOT.COR which contains the estimated standard deviations and
correlations of the parameter estimates. The template code for the simple model is in the
file file SIMPLE.TPL. The input data is in the file SIMPLE.DAT. The parameter estimates are
in the file SIMPLE.PAR. By default the standard deviations and the correlation matrix for
the model parameters are estimated. They are in the file SIMPLE.COR

index value std dev 1 2

1 a 1.9091e+00 1.5547e-01 1

2 b 4.0782e+00 7.0394e-01 -0.773 1

The format of the standard deviations report is to give the name of the parameter followed
by its value and standard deviation. After that the correlation matrix for the parameters is
given.

The code for the admodel template for this example is found in the file VONB.TPL. This
example is intended to demonstrate the advantages of using AD Model Builder’s ro-
bust regression routine over standard nonlinear least square regression procedures. Fur-
ther discussion about the underlying theory can be found in the AUTODIF User’s Man-
ual, but it is not necessary to understand the theory to make use of the procedure.
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Results for nonlinear regression with good data set

index value std dev 1 2 3

1 Linf 5.4861e+01 2.4704e+00 1.0000

2 K 1.7985e-01 2.7127e-02 -0.9191 1.0000

3 t0 1.8031e-01 2.9549e-01 -0.5856 0.7821 1.0000
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This example estimates the parameters describing a growth curve from a set of data
consisting of ages and size-at-age data. The form of the (von Bertalanffy) growth curve is
assumed to be

s(a) = L∞( 1− exp(−K(a− t0)) ) (1.1)

The three parameters of the curve to be estimated are L∞, K, and t0.

Let Oi and ai be the observed size and age of the i’th animal. The predicted size
s(ai) is given by equation 1.1. The least squares estimates for the parameters are found by
minimizing

min
L∞,K,t0

∑
i

(Oi − s(ai) )2

DATA_SECTION

init_int nobs;

init_matrix data(1,nobs,1,2)

vector age(1,nobs);

vector size(1,nobs);

PARAMETER_SECTION

init_number Linf;

init_number K;

init_number t0;

vector pred_size(1,nobs)

objective_function_value f;

PRELIMINARY_CALCS_SECTION

// get the data out of the columns of the data matrix

age=column(data,1);

size=column(data,2);

Linf=1.1*max(size); // set Linf to 1.1 times the longest observed length

PROCEDURE_SECTION

pred_size=Linf*(1.-exp(-K*(age-t0)));

f=regression(size,pred_size);

Notice the use of the regression function which calculates the log-likelihood function
of the nonlinear least-squares regression. This part of the code is formally identical to the
code for the linear regression problem in the simple example even though we are now doing
nonlinear regression. A graph of the least-square estimated growth curve and the observed
data is given in figure 1. The parameter estimates and their estimated standard deviations
which are produced by AD Model Builder are also given. For example the estimate for
L∞ is 54.86 with a standard deviation of 2.47. Since a 95% confidence limit is about ±
two standard deviations the usual 95% confidence limit of L∞ for this analysis would be
54.86± 4.94.

A disadvantage of least squares regression is the sensitivity of the estimates to a few
“bad” data points or outliers. Figure 2 show the least squares estimates when the observed
size for age 2 and age 14 have been moved off the curve. There has been a rather large
change in some of the parameter estimates. For example the estimate for L∞ has changed
from 54.86 to 48.91 and the estimated standard deviation for this parameter has increased
to 5.99. This is a common effect of outliers on least-squares estimates. They greatly increase
the size of the estimates of the standard deviations. As a result the confidence limits for the
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parameters are increased. In this case the 95% confidence limits for L∞ have been increased
from 54.86± 4.94 to 48.91± 11.98.

Of course for this simple example it could be argued that a visual examination of the
residuals would identify the outliers so that they could be removed. This is true, but in larger
nonlinear models it is often not possible or convenient to identify and remove all the outliers
in this fashion. Also the process of removing “inconvenient” observations from data can be
uncomfortably close to “cooking” the data in order to obtain the desired result from the anal-
ysis. An alternative approach which avoids these difficulties is to employ AD Model Builder’s
robust regression procedure which removes the undue influence of outlying points without
the need to expressly remove them from the data.
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Figure 2

Nonlinear regression with bad data set

Nonlinear regression with bad data set

index value std dev 1 2 3

1 Linf 4.8905e+01 5.9938e+00 1.0000

2 K 2.1246e-01 1.2076e-01 -0.8923 1.0000

3 t0 -5.9153e-01 1.4006e+00 -0.6548 0.8707 1.0000
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To invoke the robust regression procedure it is necessary to make three changes to the existing
code. The template for the robust regression version of the model can be found in the file
VONBR.TPL.

DATA_SECTION

init_int nobs;

init_matrix data(1,nobs,1,2)

vector age(1,nobs)

vector size(1,nobs)

PARAMETER_SECTION

init_number Linf

init_number K

init_number t0

vector pred_size(1,nobs)

objective_function_value f

init_bounded_number a(0.0,0.7,2)

PRELIMINARY_CALCS_SECTION

// get the data out of the columns of the data matrix

age=column(data,1);

size=column(data,2);

Linf=1.1*max(size); // set Linf to 1.1 times the longest observed length

a=0.7;

PROCEDURE_SECTION

pred_size=Linf*(1.-exp(-K*(age-t0)));

f=robust_regression(size,pred_size,a);

The main modification to the model involves the addition of the parameter a, which is
used to estimate the amount of contamination by outliers. This parameter is declared in the
PARAMETER SECTION.

init_bounded_number a(0.0,0.7,2)

This introduces two concepts, putting bounds on the values which initial parameters can
take on and carrying out the minimization in a number of stages. The value of a should be
restricted to lie between 0.0 and 0.7 (See the discussion on robust regression in the AUTODIF
user’s manual if you want to know where the 0.0 and 0.7 come from). This is accomplished by
declaring a to be of type init bounded number. In general it is not possible to estimate the
parameter a determining the amount of contamination by outliers until the other parameters
of the model have been “almost” estimated, that is, until we have done a preliminary fit of
the model. This is a common situation in nonlinear modeling and is discussed further in
some later examples. So we want to carry out the minimization in two phases. During the
first phase a should be held constant. In general for any initial parameter the last number
in its declaration, if present, determines the number of the phase in which that parameter
becomes active. If no number is given the parameter becomes active in phase 1. (Note: For
an init bounded number the upper and lower bounds must be given so the declaration

init_bounded_number a(0.0,0.7)

would use the default phase 1. The 2 in the declaration for a causes a to be constant until
the second phase of the minimization. The second change to the model involves the default
initial value a. The default value for a bounded number is the average of the upper and

Copyright c© 1993–2000 by Otter Research Ltd 1-11



lower bounds. For a this would be 0.35 which is too small. We want to use the upper bound
of 0.7. This is done by adding the line

a=0.7;

in the PRELIMINARY CALCS SECTION. Finally we modify the statement in the
PROCEDURE SECTION including the regression function to

f=robust_regression(size,pred_size,a);

to invoke the robust regression function. That’s all there is to it! These three changes
will convert any AD Model builder template from a nonlinear regression model to a robust
nonlinear regression model.
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Robust Nonlinear regression with bad data set

index value std dev 1 2 3 4

1 Linf 5.6184e+01 3.6796e+00 1.0000

2 K 1.6818e-01 3.4527e-02 -0.9173 1.0000

3 t0 6.5129e-04 4.5620e-01 -0.5483 0.7724 1.0000

4 a 3.6144e-01 1.0721e-01 -0.1946 0.0367 -0.2095 1.0000

The results for the robust regression fit to the bad data set are shown in figure 3. The
estimate for L∞ is 56.18 with a standard deviation of 3.68 to give a 95% confidence interval
of about 56.18± 7.36. Both the parameter estimates and the confidence limits are much less
affected by the outliers for the robust regression estimates than they are for the least squares
estimates. The parameter a is estimated to be equal to 0.36 which indicates that the robust
procedure has detected some moderately large outliers.

The results for the robust regression fit to the good data set are shown in figure 4. The
estimates are almost identical to the least-square estimates for the same data. This is a
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property of the robust estimates. They do almost as well as the least-square estimates when
the assumption of normally distributed errors in the statistical model is satisfied exactly,
and they do much better than least square estimates in the presence of moderate or large
outliers. You can lose only a little and you stand to gain a lot by using these estimators.
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Robust Nonlinear regression with good data set

index value std dev 1 2 3 4

1 Linf 5.5707e+01 1.9178e+00 1.0000

2 K 1.7896e-01 1.9697e-02 -0.9148 1.0000

3 t0 2.1490e-01 2.0931e-01 -0.5604 0.7680 1.0000

4 a 7.0000e-01 3.2246e-05 -0.0001 0.0000 -0.0000 1.0000

This example may strike you as being fairly complicated. If so, you should compare it
with the original solution using the so-called sensitivity equations. The reference is Bard,
Nonlinear Parameter Estimation, chapter 8. We consider the chemical kinetics problem
introduced on page 233. This is a model defined by a first order system of two ordinary
differential equations.

ds1/dt = −θ1 exp(− θ2/T )(s1 − e−1000/T s2
2)/(1 + θ3 exp(−θ4/T )s1)2

ds2/dt = 2θ1 exp(− θ2/T )(s1 − e−1000/T s2
2)/(1 + θ3 exp(−θ4/T )s1)2

(1.2)

The differential equations describe the evolution over time of the concentrations of the two
reactants, s1, and s2. There are ten initial parameters in the model, θ1, . . . , θ10. T is
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the temperature at which the reaction takes place. To integrate the system of differential
equations we require the initial concentrations of the reactants, s1(0) and s2(0) at time 0.

The reaction was carried out three times at temperatures of 200, 400, and 600 degrees.
For the first run there were initially equal concentrations of the two reactants. The second run
initially consisted of only the first reactant, and the third run initially consisted of only the
second reactant. The initial concentrations of the reactants are known only approximately.
They are

Run 1 s1(0) = θ5 = 1± 0.05 s2(0) = θ6 = 1± 0.05
Run 2 s1(0) = θ7 = 1± 0.05 s2(0) = 0
Run 3 s1(0) = 0 s2(0) = θ8 = 1± 0.05

The unknown initial concentrations are treated as parameters to be estimated with Bayesian
prior distributions on them reflecting the level of certainty of their true values which we
have. The concentrations of the reactants were not measured directly. Rather the mixture
was analyzed by a “densitometer” whose response to the concentrations of the reactants is

y = 1 + θ9s1 + θ10s2

where θ9 = 1± 0.05 and θ10 = 2± 0.05. The differences between the predicted and observed
responses of the densitometer are assumed to be normally distributed so that least squares
is used to fit the model. Bard employs an “explicit” method for integrating these differential
equations, that is, the equations are approximated by a finite difference scheme like

s1(tn+1) = s1(tn)

−h θ1 exp(− θ2/T )(s1(tn)− e−1000/T s2(tn)2)/(1 + θ3 exp(−θ4/T )s1(tn))2

s2(tn+1) = s2(tn)

+ 2h θ1 exp(− θ2/T )(s1(tn)− e−1000/T s2(tn)2)/(1 + θ3 exp(−θ4/T )s1(tn))2

(1.3)

over the time period tn to tn+1 of length h. Equations 2 are called explicit because the values
of s1 and s2 at time tn+1 are given explicitly in terms of the values of s1 and s2 at time tn.

The advantage of using an explicit scheme for integrating the model differential equa-
tions is that the derivatives of the model functions with respect to the model parameters
also satisfy differential equations – called sensitivity equations (Bard pg 227-229). It is
possible to integrate these equations as well as the model equations to get values for the
derivatives. However this involves generating a lot of extra code as well as carrying out a
lot of extra calculations. Since with AD Model Builder it is not necessary to produce any
code for derivative calculations it is possible to employ alternate schemes for integrating the
differential equations.

Let A = θ1 exp(−θ2/T ), B = exp(−1000/T ), and C = (1 + θ3 exp(−θ4/T )s1)2 In terms
of A and C we can replace explicit finite difference scheme by the semi-implicit scheme

s1(tn+1) = s1(tn)− hA(s1(tn+1)−Bs2
2(tn+1))/C
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s2(tn+1) = s2(tn) + 2hA(s1(tn+1)−Bs2(tn)s2(tn+1))/C
(1.4)

Now let D = hA/C and solve equations (3) for s1(tn+1) and s2(tn+1) to obtain

s1(tn+1) = (s1(tn) +DBs2(tn))/(1 +D)
s2(tn+1) = (s2(tn) + 2Ds1(tn))/(1 + (2DBs2(tn)))

(1.5)

Implicit and semi-implicit schemes tend to be more stable than explicit schemes over large
time steps and large values of some of the model parameters. This stability is especially
important when fitting nonlinear models because the algorithms for function minimization
will pick very large or “bad” values of the parameters from time to time and the minimization
procedure will generally perform better when a more stable scheme is employed.

DATA_SECTION

init_matrix Data(1,10,1,3)

init_vector T(1,3) // the initial temperatures for the three runs

init_vector stepsize(1,3) // the stepsize to use for numerical integration

matrix data(1,3,1,10)

matrix sample_times(1,3,1,10) // times at which reaction was sampled

vector x0(1,3) // the beginning time for each of the three

// runs

vector x1(1,3) // the ending time for each of the three runs

// for each of the three runs

PARAMETER_SECTION

init_vector theta(1,10) // the model parameters

matrix init_conc(1,3,1,2) // the initial concentrations of the two

// reactants over three time periods

vector instrument(1,2) // determines the response of the densitometer

matrix y_samples(1,10,1,2)// the predicted concentrations of the two

// reactants at the ten sampling periods

// obtained by integrating the differential

// equations

vector diff(1,10) // the difference between the observed and

// readings of the densitometer

objective_function_value f // the log_likelihood function

number bayes_part // the Bayesian contribution

number y2

number x_n

vector y_n(1,2)

vector y_n1(1,2)

number A // A B C D hold some common subexpressions

number B

number C

number D

PRELIMINARY_CALCS_SECTION

data=trans(Data); // it is more convenient to work with the transformed

// matrix

PROCEDURE_SECTION

// set up the begining and ending times for the three runs

x0(1)=0;

x1(1)=90;
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x0(2)=0;

x1(2)=18;

x0(3)=0;

x1(3)=4.5;

// set up the sample times for each of the three runs

sample_times(1).fill_seqadd(0,10); // fill with 0,10,20,...,90

sample_times(2).fill_seqadd(0,2); // fill with 0,2,4,...,18

sample_times(3).fill_seqadd(0,0.5); // fill with 0,0.5,1.0,...,4.5

// set up the initial concentrations of the two reactants for

// each of the three runs

init_conc(1,1)=theta(5);

init_conc(1,2)=theta(6);

init_conc(2,1)=theta(7);

init_conc(2,2)=0.0; // the initial concentrations is known to be 0

init_conc(3,1)=0.0; // the initial concentrations is known to be 0

init_conc(3,2)=theta(8);

// coefficients which determine the response of the densitometer

instrument(1)=theta(9);

instrument(2)=theta(10);

f=0.0;

for (int run=1;run<=3;run++)

{

// integrate the differential equations to get the predicted

// values for the y_samples

int nstep=(x1(run)-x0(run))/stepsize(run);

nstep++;

double h=(x1(run)-x0(run))/nstep; // h is the stepsize for integration

int is=1;

// get the initial conditions for this run

x_n=x0(run);

y_n=init_conc(run);

for (int i=1;i<=nstep+1;i++)

{

// gather common subexpressions

y2=y_n(2)*y_n(2);

A=theta(1)*exp(-theta(2)/T(run));

B=exp(-1000/T(run));

C=(1+theta(3)*exp(-theta(4)/T(run))*y_n(1));

C=C*C;

D=h*A/C;

// get the y vector for the next time step

y_n1(1)=(y_n(1)+D*B*y2)/(1.+D);

y_n1(2)=(y_n(2)+2.*D*y_n(1))/(1.+(2*D*B*y_n(2)));

// if an observation occurred during this time period save

// the predicted value

if (is <=10)

{

if (x_n<=sample_times(run,is) && x_n+h >= sample_times(run,is))

{

y_samples(is++)=y_n;

}

}

x_n+=h; // increment the time step

y_n=y_n1; // update the y vector for the next step
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}

diff=(1.0+y_samples*instrument)-data(run); //differences between the

// predicted and observed values of the densitometer

f+=diff*diff; // sum of squared differences

}

// take the log of f and multiply by nobs/2 to get log-likelihood

f=15.*log(f); // This is (number of obs)/2. It is wrong in Bard (pg 236).

// Add the Bayesian stuff

bayes_part=0.0;

for (int i=5;i<=9;i++)

{

bayes_part+=(theta(i)-1)*(theta(i)-1);

}

bayes_part+=(theta(10)-2)*(theta(10)-2);

f+=1./(2.*.05*.05)*bayes_part;

AD Model Builder produces a report containing values, standard deviations, and cor-
relation matrix of the parameter estimates. As discussed below any parameter or group of
parameters can easily be included in this report. For models with a large number of param-
eters this report can be a bit unwieldly so options are provided to exclude parameters from
the report if desired.

index value std dev 1 2 3 4 5 6 7 8 9 10

1 theta 1.37e+00 2.09e-01 1

2 theta 1.12e+03 7.70e+01 0.95 1

3 theta 1.80e+00 7.95e-01 0.9 0.98 1

4 theta 3.58e+02 1.94e+02 0.91 0.98 0.99 1

5 theta 1.00e+00 4.49e-02 0.20 0.28 0.12 0.17 1

6 theta 9.94e-01 2.99e-02 -0.42 -0.35 -0.25 -0.22 -0.58 1

7 theta 9.86e-01 2.59e-02 0.01 0.22 0.22 0.28 0.26 0.42 1

8 theta 1.02e+00 1.69e-02 -0.38 -0.34 -0.36 -0.30 0.09 0.63 0.34 1

9 theta 1.00e+00 2.59e-02 -0.02 -0.23 -0.23 -0.30 -0.28 -0.43 -0.98 -0.37 1

10 theta 1.97e+00 3.23e-02 0.44 0.37 0.40 0.32 -0.09 -0.65 -0.37 -0.93 0.40 1

Time series models are often used in financial modeling. For these models the parameters
are often extremely badly determined. With the stable numerical environment produced by
AD Model Builder it is a simple matter to fit such models.

Consider a time series of returns rt where t = 0, . . . , T , which are available from some
type of financial instrument. The model assumptions are

rt = µ+ εt ht = a0 + a1ε
2
t−1 + a2ht−1 for 1 ≤ t ≤ T, a0 ≥ 0, a1 ≥ 0, a2 ≥ 0
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where the εt are independent normally distributed random variables with mean 0 and variance
ht. We assume ε0 = 0 and h0 =

∑T
i=0(ri − r̄)2/(T + 1) There are four initial parameters to

be estimated for this model, µ, a0, a1, and a2. The log-likelihood function for the vector rt
is equal to a constant plus

−.5
T∑
t=1

( log(ht) + (rt − µ)2/ht )

DATA_SECTION

init_int T

init_vector r(0,T)

vector sub_r(1,T)

number h0

INITIALIZATION_SECTION

a0 .1

a1 .1

a2 .1

PARAMETER_SECTION

init_bounded_number a0(0.0,1.0)

init_bounded_number a1(0.0,1.0,2)

init_bounded_number a2(0.0,1.0,3)

init_number Mean

vector eps2(1,T)

vector h(1,T)

objective_function_value log_likelihood

PRELIMINARY_CALCS_SECTION

h0=square(std_dev(r)); // square forms the element-wise square

sub_r=r(1,T); // form a subvector so we can use vector operations

Mean=mean(r); // calculate the mean of the vector r

PROCEDURE_SECTION

eps2=square(sub_r-Mean);

h(1)=a0+a2*h0;

for (int t=2;t<=T;t++)

{

h(t)=a0+a1*eps2(t-1)+a2*h(t-1);

}

// calculate minus the log-likelihood function

log_likelihood=.5*sum(log(h)+elem_div(eps2,h)); // elem_div performs

// element-wise division of vectors

RUNTIME_SECTION

convergence_criteria .1, .1, .001

maximum_function_evaluations 20, 20, 1000

We have used vector operations such as elem div and sum to simplify the code. Of course
the code could also have employed loops and element-wise operations. The parameter values
and standard deviation report for this model appears below.

index value std dev 1 2 3 4

1 a0 1.6034e-04 2.3652e-05 1.0000

2 a1 9.3980e-02 2.0287e-02 0.1415 1.0000

3 a2 3.7263e-01 8.2333e-02 -0.9640 -0.3309 1.0000

4 Mean -1.7807e-04 3.0308e-04 0.0216 -0.1626 0.0144 1.0000

This example employs bounded initial parameters. Often it is necessary to put bounds
on parameters in nonlinear modeling to ensure that the minimization is stable. In this
example a0 is constrained to lie between 0.0 and 1.0
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init_bounded_number a0(0.0,1.0)

init_bounded_number a1(0.0,1.0,2)

init_bounded_number a2(0.0,1.0,3)

For linear models one can simply estimate all the model parameters simultaneously. For
nonlinear models often this simple approach does not work very well. It may be necessary
to keep some of the parameters fixed during the initial part of the minimization process
and carry out the minimization over a subset of the parameters. The other parameters are
included into the minimization process in a number of phases until all of the parameters
have been included. AD Model Builder provides support for this multi-phase approach. In
the declaration of any initial parameter the last number, if present, determines the phase of
the minimization during which this parameter is included (becomes active). If no number is
present the initial parameter becomes active in phase 1. In this case a0 has no phase number
and so becomes active in phase 1. a1 becomes active in phase 2, and a2 becomes active in
phase 3. In this example phase 3 is the last phase of the optimization.

It is often convenient to modify aspects of the code depending on which phase of the
minimization procedure is the current phase or on whether a particular initial parameter is
active. The function

current_phase()

returns an integer (object of type int) which is the value of the current phase. The function

last_phase()

returns the value “true” ( 6= 0) if the current phase is the last phase and false (= 0) otherwise.
If xxx is the name of any initial parameter the function

active(xxx)

returns the value “true” if xxx is active during the current phase and false otherwise.

After the minimization of the objective function has been completed AD Model Builder
calculates the estimated covariance matrix for the initial parameters as well as any other
desired parameters which have been declared to be of sd report type. Often these additional
parameters may involve considerable additional computational overhead. If the values of
these parameters are not used in calculations proper, it is possible to only calculate them
during the standard deviations report phase.

sd_phase()

The sd phase function returns the value “true” if we are in the standard deviations re-
port phase and “false” otherwise. It can be used in a conditional statement to determine
whether to perform calculations associated with some sd report object. When estimating
the parameters of a model by a multi-phase minimization procedure the default behavior
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of AD Model Builder is to carry out the default number of function evaluations until con-
vergence is achieved in each stage. If we are only interested in the parameter estimates
obtained after the last stage of the minimization it is often not necessary to carry out the
full minimization in each stage. Sometimes considerable time can be saved by relaxing the
convergence criterion in the initial stages of the optimization. The RUNTIME SECTION allows
the user to modify the default behavior of the function minimizer during the phases of the
estimation process.

RUNTIME SECTION

convergence_criteria .1, .1, .001

maximum_function_evaluations 20, 20, 1000

The convergence criteria affects the criterion used by the function minimizer to decide
when the optimization process has occurred. The function minimizer compares the maximum
value of the vector of derivatives of the objective function with respect to the independent
variables to the numbers after the convergence criteria keyword. The first number is
used in the first phase of the optimization, the second number in the second phase and so
on. If there are more phases to the optimization than there are numbers the last number
is used for the rest of the phases of the optimization. The numbers must be separated by
commas. The spaces are optional. The maximum function evaluations keyword controls
the maximum number of evaluations of the objective function which will be performed by
the function minimizer in each stage of the minimization procedure.

It is typical of many models in natural resource management that the model tends to be
rather unstable numerically and in addition some of the model parameters are often poorly
determined. Notwithstanding these difficulties it is often necessary to make decisions about
resource management based on the analysis provided by these models. The example provides
a good opportunity for presenting some more advanced features of AD Model Builder which
are designed to overcome these difficulties.

The Schaeffer – Pella-Tomlinson model is employed in fisheries management. The model
assumes that the total biomass of an exploited fish stock satisfies an ordinary differential
equation of the form

dB
dt = rB

(
1−

(
B
k

)m−1
)
− FB where m > 1 (1.6)

(Hilborn and Walters page 303) where B is the biomass, F is the instantaneous fishing
mortality rate, r is a parameter often referred to an the intrinsic rate of increase, k is the
unfished equilibrium stock size,

C = FB (1.7)

is the catch rate, and m is a parameter which determines where the maximum productivity of
the stock occurs. If the value of m is fixed at 2 the model is referred to as the Schaeffer model.
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The explicit form of the difference equation corresponding to this differential equation is

Bt+δ = Bt + rBtδ − rBt

(
Bt
k

)m−1
δ − FtBtδ (1.8)

To get a semi-implicit form of this difference equation which has better numerical stability
than the explicit version we replace some of the terms Bt on the right hand side of 1.8 by
Bt+δ to get

Bt+δ = Bt + rBtδ − rBt+δ

(
Bt
k

)m−1
δ − FtBt+δδ (1.9)

and solve for Bt+δ to give

Bt+δ =
Bt(1 + rδ)

1 + ( r(Bt/k)m−1 + Ft )δ
(1.10)

The catch Ct+δ over the period (t, t+ δ) is given by

Ct+δ = FtBt+δδ (1.11)

The parameter k is referred to as the carrying capacity or the unfished equilibrium biomass
level because it is the value that the biomass of the population will eventually assume if
there is no fishing. For a given value of k the parameter m determines the level of maximum
productivity, that is the level of biomass BMAX for which the removals from fishing can be
the greatest.

BMAX =
k

m−1
√
m

For m = 2 maximum productivity is obtained by that level of fishing pressure which
reduces the stock to 50% of the carrying capacity. For the data available in many real fisheries
problems the parameter m is very poorly determined. It is common practice therefore to
simply assume that m = 2. Similarly, it is commonly assumed that the carrying capacity k
does not change over time even though changes such as habitat degradation may well lead
to changes in k.

We want to construct a statistical model where the carrying capacity can be varying
slowly over time if there appears to be any information in the fisheries data supporting this
hypothesis. What is meant by slowly? The answer to this question will depend on the
particular situation. For our purposes slowly means slowly enough so that the model has
some chance of supplying a useful analysis of the situation at hand. We refer to this as
the assumption of manageability. The point is that since we are going to use this model
anyway to try and mange a resource we may as well assume that the model’s assumptions
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are satisfied at least well enough so that we have some hope of success. This may seem
extremely arbitrary, and it is. However it is not as arbitrary as assuming that the carrying
capacity is constant.

We assume that ki+1 = ki exp(κi) where the κi are independent normally distributed
random variables with mean 0. and that log(m − 1) is normally distributed with mean 0.
The parameters log(k) are assumed to have the structure of a random walk which is the
simplest type of time series. This Bayesian approach is a very simple method for including
time series structure into the parameters of a nonlinear model.

We don’t know the true catches Ci in each year. What we have are estimates Cobs
i of the

catch. We assume that the quantities log(Cobs
i /Ci) are normally distributed with mean 0.

Finally we must deal with the fishing mortality F . Estimates of F are not obtained
directly. Instead what is observed is an index of fishing mortality, in this case fishing effort.
We assume that for each year we have an estimate Ei of fishing effort and that the fishing
mortality rate Fi in year i Satisfies the relationship Fi = qEi exp(ηi) where q is a parameter
referred to as the catchability and the ηi are normally distributed random variables with
mean 0.

We assume that the variance of the ηi is 10 times the variance in the observed catch
errors and that the variance of the κi is 0.1 times the variance in the observed catch errors.
We assume that the variance in log(m − 1) is 0.25. Then given the data, the Bayesian
posterior distribution for the model parameters is proportional to

−(3n−1)/2 log
( ∑n

i=1 ( log(Cobs
i )− log(Ci) )2+.1

∑n
i=1 η

2
i +10

∑n
i=2 κ

2
i

)
−2. log(m−1)2(1.12)

The number of initial parameters in the model (that is the number of independent
variables in the function to be minimized) is 2n+ 4. For the halibut data there are 56 years
of data which gives 116 parameters. As estimates of the model parameters we use the mode
of the posterior distribution which can by found by minimizing -1 times expression (0.8).
The covariance matrix of the model parameters are estimated by computing the inverse of
the hessian of expression (0.8) at the minimum. The template for the model follows. To
improve the readability the entire template has been included. The various sections are
discussed below.

DATA_SECTION

init_int nobs;

init_matrix data(1,nobs,1,3)

vector obs_catch(1,nobs);

vector cpue(1,nobs);

vector effort(1,nobs);

number avg_effort

INITIALIZATION_SECTION

m 2.

beta 1.

r 1.

PARAMETER_SECTION

init_bounded_number q(0.,1.)
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init_bounded_number beta(0.,5.)

init_bounded_number r(0.,5,2)

init_number log_binit(2)

init_bounded_dev_vector effort_devs(1,nobs,-5.,5.,3)

init_bounded_number m(1,10.,4)

init_bounded_vector k_devs(2,nobs,-5.,5.,4)

number binit

vector pred_catch(1,nobs)

vector biomass(1,nobs)

vector f(1,nobs)

vector k(1,nobs)

vector k_trend(1,nobs)

sdreport_number k_1

sdreport_number k_last

sdreport_number k_change

sdreport_number k_ratio

sdreport_number B_projected

number tmp_mort;

number bio_tmp;

number c_tmp;

objective_function_value ff;

PRELIMINARY_CALCS_SECTION

// get the data out of the data matrix into

obs_catch=column(data,2);

cpue=column(data,3);

// divide the catch by the cpue to get the effort

effort=elem_div(obs_catch,cpue);

// normalize the effort and save the average

double avg_effort=mean(effort);

effort/=avg_effort;

cout << " beta" << beta << endl;

PROCEDURE_SECTION

// calculate the fishing mortality

calculate_fishing_mortality();

// calculate the biomass and predicted catch

calculate_biomass_and_predicted_catch();

// calculate the objective function

calculate_the_objective_function();

FUNCTION calculate_fishing_mortality

// calculate the fishing mortality

f=q*effort;

if (active(effort_devs)) f=elem_prod(f,exp(effort_devs));

FUNCTION calculate_biomass_and_predicted_catch

// calculate the biomass and predicted catch

if (!active(log_binit))

{

log_binit=log(obs_catch(1)/(q*effort(1)));

}

binit=exp(log_binit);

biomass[1]=binit;

if (active(k_devs))

{

k(1)=binit/beta;

for (int i=2;i<=nobs;i++)

{

k(i)=k(i-1)*exp(k_devs(i));
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}

}

else

{

// set the whole vector equal to the constant k value

k=binit/beta;

}

// only calculate these for the standard deviation report

if (sd_phase)

{

k_1=k(1);

k_last=k(nobs);

k_ratio=k(nobs)/k(1);

k_change=k(nobs)-k(1);

}

// two time steps per year desired

int nsteps=2;

double delta=1./nsteps;

// Integrate the logistic dynamics over n time steps per year

for (int i=1; i<=nobs; i++)

{

bio_tmp=1.e-20+biomass[i];

c_tmp=0.;

for (int j=1; j<=nsteps; j++)

{

//This is the new biomass after time step delta

bio_tmp=bio_tmp*(1.+r*delta)/

(1.+ (r*pow(bio_tmp/k(i),m-1.)+f(i))*delta );

// This is the catch over time step delta

c_tmp+=f(i)*delta*bio_tmp;

}

pred_catch[i]=c_tmp; // This is the catch for this year

if (i<nobs)

{

biomass[i+1]=bio_tmp;// This is the biomass at the begining of the next

} // year

else

{

B_projected=bio_tmp; // get the projected biomass for std dev report

}

}

FUNCTION calculate_the_objective_function

if (!active(effort_devs))

{

ff=nobs/2.*log(norm2(log(obs_catch)-log(1.e-10+pred_catch)));

}

else if(!active(k_devs))

{

ff= .5*(size_count(obs_catch)+size_count(effort_devs))*

log(norm2(log(obs_catch)-log(1.e-10+pred_catch))

+0.1*norm2(effort_devs));

}

else

{

ff= .5*( size_count(obs_catch)+size_count(effort_devs)

+size_count(k_devs) )*

log(norm2(log(obs_catch)-log(pred_catch))
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+ 0.1*norm2(effort_devs)+10.*norm2(k_devs));

}

// Bayesian contribution for Pella Tomlinson m

ff+=2.*square(log(m-1.));

if (current_phase()<3)

{

ff+=1000.*square(log(mean(f)/.4));

}

The data are contained in three columns, with the catch and catch per unit effort data
contained in the second and third columns. The matrix data is defined in order to read the
data. The second and third columns of data which we are interested in will then be put into
the vectors obs catch and cpue. (Later we get the fishing effort by dividing the obs catch

by the cpue.)

DATA_SECTION

init_int nobs

init_matrix data(1,nobs,1,3)

vector obs_catch(1,nobs)

vector cpue(1,nobs)

vector effort(1,nobs)

number avg_effort

The INITIALIZATION SECTION is used to define default values for some model parame-
ters if the standard default provided by AD Model Builder is not acceptable. If the model
finds the parameter file (whose default name is admodel.par) it will read in the initial val-
ues for the parameters from there. Otherwise the default values will be used unless the
parameters appear in the INITIALIZATION SECTION in which case those values will be used.

INITIALIZATION_SECTION

m 2.

beta 1.

r 1.

The PARAMETER SECTION for this model introduces several new features of
AD Model Builder. The statement init bounded number r(0.,5.,2) declares an initial
parameter whose value will be constrained to lie between 0.0 and 5.0. It is often necessary to
put bounds on the initial parameters in nonlinear models to get stable model performance.
This is accomplished in AD Model Builder simply by declaring the initial parameter to be
bounded and providing the desired bounds. The default initial value for a bounded object
is the average of the lower and upper bounds.

The third number 2 in the declaration determines that this initial parameter will not
be made active until the second phase of the minimization. This introduces the concept of
phases in the minimization process.

As soon as nonlinear statistical models become a bit complicated one often finds that
simply attempting to estimate all the parameters simultaneously does not work very well.
In short “you can’t get there from here”. A better strategy is to keep some of the param-
eters fixed and to first minimize the function with respect to the other parameters. More
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parameters are added in a stepwise relaxation process. In AD Model Builder each step of
this relaxation process is termed a phase. The parameter r is not allowed to vary until the
second phase. Initial parameters which are allowed to vary will be termed active. In the
first phase the active parameter are beta and q. The default phase for an initial parameter
is phase 1 if no phase number is included in its declaration. The phase number for an initial
parameter is the last number in the declaration for that parameter. The general order for the
arguments int the definition of any initial parameter is the size data for a vector or matrix
object if needed, the bounds for a bounded object if needed, followed by the phase number
if desired.

It is often a difficult problem to decide what the order of relaxation for the initial param-
eters should be. This must sometimes be done by trial and error. HoweverAD Model Builder
makes the process a lot simpler. One only needs to change the phase numbers of the initial
parameters int the PARAMETER SECTION and recompile the program.

Often in statistical modeling it is useful to regard a vector of quantities xi as consisting
of an overall mean, µ, and a set of deviations from that mean, δi, so that

xi = µ+ δi where
∑
i

δi = 0

AD Model Builder provides support for this modeling construction with the
init bounded dev vector declaration. The components of an object created by this decla-
ration will automatically sum to 0 without any user intervention. The line

init_bounded_dev_vector effort_devs(1,nobs,-5.,5.,3)

declares effort devs to be this kind of object. The bounds -5.,5. control the range of the
deviations. Putting reasonable bounds on such deviations often improves the stability of the
estimation procedure.

AD Model Builder has sdreport number, sdreport vector, and sdreport matrix dec-
larations in the PARAMETER SECTION. These objects behave the same as number, vector, and
matrix objects with the additional property that they are included in the report of the es-
timated standard deviations and correlation matrix.

For example merely by including the statement sdreport number B projected one can
obtain the estimated standard deviation of the biomass projection for the next year. (Of
course you must also set B projected equal to the projected biomass. This is done in the
PROCEDURE SECTION.)

PARAMETER_SECTION

init_bounded_number q(0.,1.)

init_bounded_number beta(0.,5.)

init_bounded_number r(0.,5,2)

init_number log_binit(2)

init_bounded_dev_vector effort_devs(1,nobs,-5.,5.,3)

init_bounded_number m(1,10.,4)

init_bounded_vector k_devs(2,nobs,-5.,5.,4)

number binit
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vector pred_catch(1,nobs)

vector biomass(1,nobs)

vector f(1,nobs)

vector k(1,nobs)

vector k_trend(1,nobs)

sdreport_number k_1

sdreport_number k_last

sdreport_number k_change

sdreport_number k_ratio

sdreport_number B_projected

number tmp_mort;

number bio_tmp;

number c_tmp;

objective_function_value ff;

The PRELIMINARY CALCS SECTION carries out a few simple operations on the data. The
model expects to have catch and effort data, but the input file contained catch and cpue
(catch/effort) data. We divide the catch data by the cpue data to get the effort data. The
AUTODIF operation elem div which performs element-wise divisions of vector objects is
used. As usual the same thing could have been accomplished by employing a loop and
writing element-wise code. The effort data are then normalized, that is, they are divided by
their average so that their average becomes 1. This is done so that we have a good idea what
the catchability parameter q should be to give reasonable values for the fishing mortality
rate (since F = qE).

Notice that the PRELIMINARY CALCS SECTION section is C++ code so that statements
must be ended with a ;. extract a column from a matrix

PRELIMINARY_CALCS_SECTION

// get the data out of the data matrix into

obs_catch=column(data,2);

cpue=column(data,3);

// divide the catch by the cpue to get the effort

effort=elem_div(obs_catch,cpue);

// normalize the effort and save the average

double avg_effort=mean(effort);

effort/=avg_effort;

The PROCEDURE SECTION contains several new AD Model Builder features. Some have
to do with the notion of carrying out the minimization in a number of steps or phases. The
line

if (active(effort_devs)) f=elem_prod(f,exp(effort_devs));

introduces the active function. This function can be used on any initial parameter and
will return a value “true” if that parameter is active in the current phase. The idea here is
that if the initial parameters effort devs are not active then since their value is 0 carrying
out the calculations will have no effect and we can save time by avoiding the calculations.
The active function is also used in the statement

if (!active(log_binit))

{

log_binit=log(obs_catch(1)/(q*effort(1)));
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}

The idea is that if the log binit initial parameter (this is the logarithm of the biomass
at the beginning of the first year) is not active then we set it equal to the value which
produces the observed catch (using the relationship C = qEB so that B = C/(qE). The
active function is also used in the calculations of the objective function so that unnecessary
calculations are avoided.

The following code helps to deal with convergence problems in this type of nonlinear
model. The problem is that the starting parameter values are often so bad that the optimiza-
tion procedure will try to make the population very large and the exploitation rate very small
because this is the best local solution near the starting parameter values. To circumvent this
problem we include a penalty function to keep the average value of the fishing mortality rate
f close to 0.2 during the first two phases of the minimization. In the final phase the size of
the penalty term is reduced to a very small value. The function current phase() returns
the value of the current phase of the minimization.

if (current_phase()<3)

{

ff+=1000.*square(log(mean(f)/.4));

}

Subroutines or functions are used to improve the organization of the code. The code for the
main part of the PROCEDURE SECTION which invokes the FUNCTIONS should be placed at the
top of the PROCEDURE SECTION.

PROCEDURE_SECTION

// calculate the fishing mortality

calculate_fishing_mortality();

// calculate the biomass and predicted catch

calculate_biomass_and_predicted_catch();

// calculate the objective function

calculate_the_objective_function();

There are three user-defined functions called at the beginning of the PROCEDURE SECTION

The code to define the FUNCTIONS comes next. To define a function whose name is name the
template directive FUNCTION name is used. Notice that no parentheses () are used in the
definition of the function, but to call the function the statement takes the form name();

This section describes a simple catch-at age model. The data input to this model include
estimates of the numbers at age caught by the fishery each year and estimates the fishing
effort each year. This example introduces AD Model Builder’s ability to automatically cal-
culate profile likelihoods for carrying out Bayesian inference. To cause the profile likelihood
calculations to be carried out use the -lprof command line argument.
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Let i index fishing years 1 ≤ i ≤ n and j index age classes with 1 ≤ j ≤ r. The
instantaneous fishing mortality rate is assumed to have the form Fij = qEisj exp(δi) where
q is called the catchability, Ei is the observed fishing effort, sj is an age-dependent effect
termed the selectivity, and the δi are deviations from the expected relationship between
the observed fishing effort and the resulting fishing mortality. The δi are assumed to be
normally distributed with mean 0. The instantaneous natural mortality rate M is assumed
to be independent of year and age class. It is not estimated in this version of the model.
The instantaneous total mortality rate is given by Zij = Fij +M . The survival rate is given
by Sij = exp(−Zij). The number of age class j fish in the population in year i is denoted by
Nij. The relationship Ni+1,j+1 = NijSij is assumed to hold. Note that using this relationship
if one knows Sij then all the Nij can be calculated from knowledge of the initial population
in year 1, N11, N12, . . . , N1r and knowledge of the recruitment in each year N21, N31, . . . Nn1.

The purpose of the model is to estimate quantities of interest to managers such as the
population size and exploitation rates and to make projections about the population. In
particular we can get an estimate of the numbers of fish in the population in year n+ 1 for
age classes 2 or greater from the relationship Nn+1,j+1 = NnjSnj. If we have estimates mj

for the mean weight at age j, then the projected biomass level Bn+1 of age class 2+ fish for
year n+ 1 can be computed from the relationship Bn+1 =

∑r
j=2 mjNn+1,j.

Besides getting a point estimate for quantities of interest like Bn+1 we also want to get
an idea of how well determined the estimate is. AD Model Builder has completely automated
the process of deriving good confidence limits for these parameters in a Bayesian context.
One simply needs to declare the parameter to be of type likeprof number. The results are
given in the section on Bayesian inference.

The code for the catch-at-age model is:

DATA_SECTION

// the number of years of data

init_int nyrs

// the number of age classes in the population

init_int nages

// the catch-at-age data

init_matrix obs_catch_at_age(1,nyrs,1,nages)

//estimates of fishing effort

init_vector effort(1,nyrs)

// natural mortality rate

init_number M

// need to have relative weight at age to calculate biomass of 2+

vector relwt(2,nages)

INITIALIZATION_SECTION

log_q -1

log_P 5

PARAMETER_SECTION

init_number log_q(1) // log of the catchability

init_number log_P(1) // overall population scaling parameter

init_bounded_dev_vector log_sel_coff(1,nages-1,-15.,15.,2)

init_bounded_dev_vector log_relpop(1,nyrs+nages-1,-15.,15.,2)

init_bounded_dev_vector effort_devs(1,nyrs,-5.,5.,3)

vector log_sel(1,nages)
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vector log_initpop(1,nyrs+nages-1);

matrix F(1,nyrs,1,nages) // the instantaneous fishing mortality

matrix Z(1,nyrs,1,nages) // the instantaneous total mortality

matrix S(1,nyrs,1,nages) // the survival rate

matrix N(1,nyrs,1,nages) // the predicted numbers at age

matrix C(1,nyrs,1,nages) // the predicted catch at age

objective_function_value f

sdreport_number avg_F

sdreport_vector predicted_N(2,nages)

sdreport_vector ratio_N(2,nages)

likeprof_number pred_B

PRELIMINARY_CALCS_SECTION

// this is just to invent some relative average

// weight numbers

relwt.fill_seqadd(1.,1.);

relwt=pow(relwt,.5);

relwt/=max(relwt);

PROCEDURE_SECTION

// example of using FUNCTION to structure the procedure section

get_mortality_and_survival_rates();

get_numbers_at_age();

get_catch_at_age();

evaluate_the_objective_function();

FUNCTION get_mortality_and_survival_rates

// calculate the selectivity from the sel_coffs

for (int j=1;j<nages;j++)

{

log_sel(j)=log_sel_coff(j);

}

// the selectivity is the same for the last two age classes

log_sel(nages)=log_sel_coff(nages-1);

// This is the same as F(i,j)=exp(log_q)*effort(i)*exp(log_sel(j));

F=outer_prod(mfexp(log_q)*effort,mfexp(log_sel));

if (active(effort_devs))

{

for (int i=1;i<=nyrs;i++)

{

F(i)=F(i)*exp(effort_devs(i));

}

}

// get the total mortality

Z=F+M;

// get the survival rate

S=mfexp(-1.0*Z);

FUNCTION get_numbers_at_age

log_initpop=log_relpop+log_P;

for (int i=1;i<=nyrs;i++)

{

N(i,1)=mfexp(log_initpop(i));

}

for (int j=2;j<=nages;j++)

{
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N(1,j)=mfexp(log_initpop(nyrs+j-1));

}

for (i=1;i<nyrs;i++)

{

for (j=1;j<nages;j++)

{

N(i+1,j+1)=N(i,j)*S(i,j);

}

}

// calculated predicted numbers at age for next year

for (j=1;j<nages;j++)

{

predicted_N(j+1)=N(nyrs,j)*S(nyrs,j);

ratio_N(j+1)=predicted_N(j+1)/N(1,j+1);

}

// calculate predicted biomass for profile

// likelihood report

pred_B=predicted_N *relwt;

FUNCTION get_catch_at_age

C=elem_prod(elem_div(F,Z),elem_prod(1.-S,N));

FUNCTION evaluate_the_objective_function

// penalty functions to ‘‘regularize ’’ the solution

f+=.01*norm2(log_relpop);

avg_F=sum(F)/double(size_count(F));

if (last_phase())

{

// a very small penalty on the average fishing mortality

f+= .001*square(log(avg_F/.2));

}

else

{

// use a large penalty during the initial phases to keep the

// fishing mortality high

f+= 1000.*square(log(avg_F/.2));

}

// errors in variables type objective function with errors in

// the catch at age and errors in the effort fishing mortality

// relationship

if (active(effort_devs)

{

// only include the effort_devs in the objective function if

// they are active parameters

f+=0.5*double(size_count(C)+size_count(effort_devs))

* log( sum(elem_div(square(C-obs_catch_at_age),.01+C))

+ 0.1*norm2(effort_devs));

}

else

{

// objective function without the effort_devs

f+=0.5*double(size_count(C))

* log( sum(elem_div(square(C-obs_catch_at_age),.01+C)));

}

REPORT_SECTION

report << "Estimated numbers of fish " << endl;

report << N << endl;

report << "Estimated numbers in catch " << endl;
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report << C << endl;

report << "Observed numbers in catch " << endl;

report << obs_catch_at_age << endl;

report << "Estimated fishing mortality " << endl;

report << F << endl;

This model employs several instances of the init bounded dev vector type. This type
consists of a vector of numbers which sum to 0, that is they are deviations from a common
mean, and are bounded. For example the quantities log relpop are used to parameterize
the logarithm of the variations in year class strength of the fish population. Putting bounds
on the magnitude of the deviations helps to improve the stability of the model. The bounds
are from -15.0 to 15.0 which gives the estimates of relative year class strength a dynamic
range of exp(30.0).

The FUNCTION keyword has been employed a number of times in the PARAMETER SECTION

to help structure the code. A function is defined simply by using the FUNCTION keyword
followed by the name of the function.

FUNCTION get_mortality_and_survival_rates

Don’t include the parentheses or semicolon here. To use the function simply write its name
in the procedure section.

get_mortality_and_survival_rates();

You must include the parentheses and the semicolon here.

The REPORT SECTION shows how to generate a report for an AD Model Builder program.
The default report generating machinery utilizes the C++ stream formalism. You don’t need
to know much about streams to make a report, but a few comments are in order. The stream
formalism associates stream object with a file. In this case the stream object associated with
the AD Model Builder report file is report. To write an object xxx into the report file you
insert the line

report << xxx;

into the REPORT SECTION. If you want to skip to a new line after writing the object you can
include the stream manipulator endl as in

report << "Estimated numbers of fish " << endl;

Notice that the stream operations know about common C objects such as strings, so that it
is a simple matter to put comments or labels into the report file.

AD Model Builder enables one to quickly build models with large numbers of parameters –
this is especially useful for employing Bayesian analysis. Traditionally however it has been
difficult to interpret the results of analysis using such models. In a Bayesian context the
results are represented by the posterior probability distribution for the model parameters.
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To get exact results from the posterior distribution it is necessary to evaluate integrals over
large dimensional spaces and this can be computationally intractable. AD Model Builder
provides an approximations to these integrals in the form of the profile likelihood. The profile
likelihood can be used to estimates for extreme values (such as estimating a value β so that
for a parameter b the probability that b < β ≈ 0.10 or the probability that b > β ≈ 0.10)
for any model parameter. To use this facility simply declare the parameter of interest to
be of type likeprof number in the PARAMETER SECTION and assign the correct value to the
parameter in the PROCEDURE SECTION.

The code for the catch at age model estimates the profile likelihood for the projected
biomass of age class 2+ fish. (Age class 2+ has been used to avoid the extra problem of
dealing with the uncertainty of the recruitment of age class 1 fish). As a typical application
of the method, the user of the model can estimate the probability that the biomass of fish for
next year will be larger or smaller than a certain value. Estimates like these are obviously
of great interest to managers of natural resources.

The profile likelihood report for a variable is in a file with the same name as the variable
(truncated to eight letters, if necessary, with the suffix .PLT appended). For this example
the report is in the file PRED B.PLT. Part of the file is shown here.

pred_B:

Profile likelihood

-1411.23 1.1604e-09

-1250.5 1.71005e-09

-1154.06 2.22411e-09

................... // skip some here

...................

278.258 2.79633e-05

324.632 5.28205e-05

388.923 6.89413e-05

453.214 8.84641e-05

517.505 0.0001116

581.796 0.000138412

...................

...................

1289 0.000482459

1353.29 0.000494449

1417.58 0.000503261

1481.87 0.000508715

1546.16 0.0005107

1610.45 0.000509175

1674.74 0.000504171

1739.03 0.000490788

1803.32 0.000476089

1867.61 0.000460214

1931.91 0.000443313

1996.2 0.000425539

2060.49 0.000407049

2124.78 0.000388

2189.07 0.00036855

...................

...................

4503.55 2.27712e-05
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4599.98 2.00312e-05

4760.71 1.48842e-05

4921.44 1.07058e-05

5082.16 7.45383e-06

...................

...................

6528.71 6.82689e-07

6689.44 6.91085e-07

6850.17 7.3193e-07

Minimum width confidence limits:

significance level lower bound upper bound

0.90 572.537 3153.43

0.95 453.214 3467.07

0.975 347.024 3667.76

One sided confidence limits for the profile likelihood:

The probability is 0.9 that pred_B is greater than 943.214

The probability is 0.95 that pred_B is greater than 750.503

The probability is 0.975 that pred_B is greater than 602.507

The probability is 0.9 that pred_B is less than 3173.97

The probability is 0.95 that pred_B is less than 3682.75

The probability is 0.975 that pred_B is less than 4199.03

The file contains the probability density function and the approximate confidence limits
for the the profile likelihood and the normal approximation. Since the format is the same
for both, we only discuss the profile likelihood here. The first part of the report contains
pairs of numbers (xi, yi) which consist of values of the parameter in the report (in this case
PRED B and the estimated value for the probability density associated with that parameter
at the point. The probability that the parameter lies in the interval xr ≤ x ≤ xs) where
xr < xs can be estimated from the sum

s∑
i=r

(xi+1 − xi)yi.

The reports of the one and two sided confidence limits for the parameter were produced
this way. Also a plot of yi verses xi
gives the user an indication of what the probability distribution of the parameter looks like.
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Normal approx.

The the profile likelihood indicates the fact that the biomass can not be less than
zero. The normal approximation is not very useful for calculating the probability that the
biomass is very low – a question of great interest to managers who are probably not going
to be impressed by the knowledge that there is an estimated probability of 0.975 that the
biomass is greater than -52.660.

One sided confidence limits for the normal approximation

The probability is 0.9 that pred_B is greater than 551.235

The probability is 0.95 that pred_B is greater than 202.374

The probability is 0.975 that pred_B is greater than -52.660

The functions set stepnumber() and set stepsize() can be used to modify the number
of points used to approximate the profile likelihood or to change the stepsize between the
points. This can be carried out in the PRELIMINARY CALCS SECTION. If u has been declared
to be of type likeprof number

PRELIMINARY_CALCS_SECTION

u.set_stepnumber(10); // default value is 8

u.set_stepsize(0.2); // default value is 0.5

will set the number of steps equal to 21 (from -10 to 10) and will set the step size equal to
0.2 times the estimated standard deviation for the parameter u.
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The following code fragment illustrates how the files used for input of the data and parameter
values can be changed. This code has been taken from the example catage.tpl and modified.
In the DATA SECTION, the data are first read in from the file catch.dat. Then the effort data
are read in from the file effort.dat. The remainder of the data are read in from the file
catch.dat. It is necessary to save the current file position in an object of type streampos.
This object is used to position the file properly. The escape sequence !! can be used to
include one line of the users’s code into the DATA SECTION or PARAMETER SECTION. It is more
compact than the LOCAL CALCS construction.

DATA_SECTION

// will read data from file catchdat.dat

!! ad_comm::change_datafile_name("catchdat.dat");

init_int nyrs

init_int nages

init_matrix obs_catch_at_age(1,nyrs,1,nages)

// now read the effort data from the file effort.dat and save the current

// file position in catchdat.dat in the object tmp

!! streampos tmp = ad_comm::change_datafile_name("effort.dat");

init_vector effort(1,nyrs)

// now read the rest of the data from the file catchdat.dat

// including the ioption argument tmp will reset the file to that position

!! ad_comm::change_datafile_name("catchdat.dat",tmp);

init_number M

// ....

PARAMETER_SECTION

// will read parameters from file catch.par

!! ad_comm::change_parfile_name("catch.par");

If v is a vector object then for integers l and u the expression v(l,u) is a vector object
of the same type with minimum valid index l and maximum valid index u (Of course l

and u must be within the valid index range for v and l must be less than or equal to u.
The subvector formed by this operation ican be used on both sides of the equals sign in
an arithmetic expression. The number of loops which must be written can be significantly
reduced in this manner. We shall use the subvector operator to remove some of the loops in
the catch-at-age model code.

// calculate the selectivity from the sel_coffs

for (int j=1;j<nages;j++)

{

log_sel(j)=log_sel_coff(j);

}

// the selectivity is the same for the last two age classes

log_sel(nages)=log_sel_coff(nages-1);

// same code using the subvector operation

log_sel(1,nage-1)=log_sel_coff;

// the selectivity is the same for the last two age classes

log_sel(nages)=log_sel_coff(nages-1);
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Notice that log sel(1,nage-1) is not a distinct vector from log sel. This means that an
assignment to log sel(1,nage-1) is an assignment to a part of log sel. The next example
is a bit more complicated. It involves taking a row of a matrix, to form a vector, forming a
subvector, and changing the valid index range for the vector.

// loop form of the code

for (i=1;i<nyrs;i++)

{

for (j=1;j<nages;j++)

{

N(i+1,j+1)=N(i,j)*S(i,j);

}

}

// can only eliminate the inside loop

for (i=1;i<nyrs;i++)

{

// ++ increments the index bounds by 1

N(i+1)(2,nyrs)=++elem_prod(N(i)(1,nage-1),S(i)(1,nage-1));

}

Notice that N(i+1) is a vector object so that N(i+1)(2,nyrs) is a subvector of N(i). An-
other point is that elem prod(N(i)(1,nage-1),S(i)(1,nage-1)) is a vector object with
minimum valid index 1 and maximum valid index nyrs-1. The operator ++ applied to a
subvector increments the valid index range by 1 so that it has the same range of valid index
values as N(i+1)(2,nyrs). The operator -- would decrement the valid index range by 1.

The example contained in the file FOURD.TPL illustrates some aspects of the use of three and
four dimensional arrays. There are now examples of the use of arrays up to dimension 7 in
the documentation2.

DATA_SECTION

init_4darray d4(1,2,1,2,1,3,1,3)

init_3darray d3(1,2,1,3,1,3)

PARAMETER_SECTION

init_matrix M(1,3,1,3)

4darray p4(1,2,1,2,1,3,2,3)

objective_function_value f

PRELIMINARY_CALCS_SECTION

for (int i=1;i<=3;i++)

{

M(i,i)=1; // set M equal to the identity matrix to start

}

PROCEDURE_SECTION

for (int i=1;i<=2;i++)

{

for (int j=1;j<=2;j++)

{

// d4(i,j) is a 3x3 matrix -- d3(i) is a 3x3 matrix

// d4(i,j)*M is matrix multiplication -- inv(M) is matrix inverse

2See the chapter on regime switching models for an example of the use of higher dimensional arrays.
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f+= norm2( d4(i,j)*M + d3(i)+ inv(M) );

}

}

REPORT_SECTION

report << "Printout of a 4 dimensional array" << endl << endl;

report << d4 << endl << endl;

report << "Printout of a 3 dimensional array" << endl << endl;

report << d3 << endl << endl;

In the DATA SECTION you can use 3darrays, 4darrays, up to 7darrays and init 3darrays,
init 4darrays up to init 7darrays. In the PARAMETER SECTION you can use 3darrays,
4darrays, up to 7darrays and init 3darrays, init 4darrays up to init 5darrays at
the time of writing.

If d4 is a 4darray then d4(i) is a three dimensional array and d4(i,j) is a matrix

object so that d4(i,j)*M is matrix multiplication. Similarly if d3 is a 3darray then d3(i)

is a matrix object so that d4(i,j)*M + d3(i) +inv(M) combines matrix multiplication,
matrix inversion, and matrix addition.

The TOP OF MAIN section is intended to allow the programmer to insert any desired C++

code at the top of the main() function in the program. The code is copied literally from the
template to the program. This section can be used to set the AUTODIF global variables
(see the AUTODIF manual chapter on AUTODIF global variables.) The following code
fragment will set these variables.

TOP_OF_MAIN_SECTION

arrmblsize = 200000; // use instead of

// gradient_structure::set_ARRAY_MEMBLOCK_SIZE

gradient_structure::set_GRADSTACK_BUFFER_SIZE(100000); // this may be incorrect in

// the AUTODIF manual.

gradient_structure::set_CMPDIF_BUFFER_SIZE(50000);

gradient_structure::set_MAX_NVAR_OFFSET(500); // can have up to 500

// independent variables

gradient_structure::set_MAX_NUM_DEPENDENT_VARIABLES(500); // can have up to

// 500 dependent variables

Note that within AD Model Builder
one doesn’t use the function gradient structure::set ARRAY MEMBLOCK SIZE to set the
amount of memory available for variable arrays. Instead use the line of code arrmblsize =

nnn; where nnn is the amount of memory desired.

The GLOBALS SECTION is intended to allow the programmer to insert any desired C++

code before the main() function in the program. The code is copied literally from the
template to the program. This enables the programmer to define global objects and to
include include header files and user-defined functions into the generated C++ code.
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Code in the between phases section is executed before each phase of the minimization. It
is possible to carry out different actions which depend on which phase of the minimization
is to begin by using a swtich statement (you can read about this in a book on C or C++)
together with the current phase() function.

switch (current_phase()

{

case 1:

// some action

cout << "Before phase 1 minimization " << endl;

break;

case 2: i

// some action

cout << "Before phase 2 minimization " << endl;

break;

// ....

}
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Chapter 2

Markov Chain Simulation

The reference for this chapter is Bayesian Data Analysis (chapter 11) by Gelman et al.

The Markov chain Monte Carlo method (MCMC) is a method for approximating the
posterior distribution for parameters of interest in the Bayesian framework. This option is
invoked by using the command line option -mcmc N where N is the number of simulations
performed. You will proabably also want to include the option -mcscale which dynamically
scales the covariance matrix until a reasonable acceptance rate is observed. You may also
want to use the -mcmult n option which scales the initial covariances matrix if the initial
values are so large that arithmetic errors occur. One advantage of AD Model Builder over
some other implementations of MCMC is that the mode of the posterior distribution together
with the hessian at the mode is available to use for the MCMC routine. This information
is used to implement a version of the Hastings-Metropolis algorithm. Another advantage is
that with AD Model Builder it is possible to calculate the profile likelihood for a parameter
of interest and compare the distribution to the MCMC distribution for that parameter. A
large discrepancy may indicate that one or both estimates are inadequate. If you wish to do
more simulations (and to carry on from where the last one ended use the -mcr option. The
following figure compares the profile likelihood for the projected biomass to the estimates
produced by the MCMC method for different sample sizes (25,000 and 2,500,000 samples)
for the catage example.
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A report containing the observed distributions is produced in the file root.hst. All
objects of type sdreport i.e number, vector or matrix are included. It is possible to save the
results of every n’th simulation by using the -mcsave n option. Afterwords these values can
be used by running the model with the -mceval option which will evaluate the userfunction
once for every saved simulation value. At this time the function mceval phase() will return
the value true and can be used as a switch to perform desired calculations. The results are
saved in a binary file root.psv. If you want to convert this file into ASCII see the next
section.

AD Model Builder uses the hessian to produce an (almost) multivariate normal distri-
bution for the Metropolis-Hastings algorithm. It is not exacly multivariate normal because
the random vectors produced are modified to satisfy any bounds on the parameters.

There is also an option for using a fatter tailed distribution. This distribution is a
mixture of the multivariate normal and a fat-tailed distribution. It is invoked with the
-mcgrope n option where n is the amount of fat-tailed distribution in the mixture. Proabably
a value of n between 0.05 and 0.10 is best.

Often the data which AD Model Builder needs to save are saved in the form of a binary file
using the uistream and uostream classes. If these data consist of a series of vectors all of
which have the same dimension they are often saved in this form where the dimension is saved
at the top of the file ad the vectors are saved afterword. It may be useful to convert thes
numbers into binary form so that they can be put into other programs such as spreadsheets.
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the following code will read the contents of these binary files. YOu should call the program
readbin.cpp. It should be a simple matter to modify this program for other uses.

#include <fvar.hpp>

/* program to read a binary file (using ADMB’s uistream and

uostream stream classes) of vectors of length n.

It is assumed that the size n is stored at the top of

the file. there is no information about any many vectors

are stored so we must check for an eof after each read

To use the program you type:

readbin filename

*/

void produce_comma_delimited_output(dvector& v)

{

int i1=v.indexmin();

int i2=v.indexmax();

for (int i=i1;i<=i2;i++)

{

cout << v(i) << ",";

}

cout << endl;

}

main(int argc, char * argv[])

{

if (argc < 2)

{

cerr << " Usage: progname inputfilename" << endl;

exit(1);

}

uistream uis = uistream(argv[1]);

if (!uis)

{

cerr << " Error trying to open binary input file "

<< argv[1] << endl;

exit(1);

}

int ndim;

uis >> ndim;

if (!uis)

{

cerr << " Error trying to read dimension of the vector"

" from the top of the file "

<< argv[1] << endl;

exit(1);

}

if (ndim <=0)

{

cerr << " Read invalid dimension for the vector"

" from the top of the file "

<< argv[1] << " the number was " << ndim << endl;

exit(1);

}

int nswitch;

cout << " 1 to see all records" << endl

<< " 2 then after the prompts n1 and n2 to see all" << endl
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<< " records between n1 and n2 inclusive" << endl

<< " 3 to see the dimension of the vector" << endl

<< " 4 to see how many vectors there are" << endl;

cin >> nswitch;

dvector rec(1,ndim);

int n1=0;

int n2=0;

int ii=0;

switch(nswitch)

{

case 2:

cout << " Put in the number for the first record you want to see"

<< endl;

cin >> n1;

cout << " Put in the number for the second record you want to see"

<< endl;

cin >> n2;

case 1:

do

{

uis >> rec;

if (uis.eof()) break;

if (!uis)

{

cerr << " Error trying to read vector number " << ii

<< " from file " << argv[1] << endl;

exit(1);

}

ii++;

if (!n1)

{

// comment out the one you don’t want

//cout << rec << endl;

produce_comma_delimited_output(rec);

}

else

{

if (n1<=ii && ii<=n2)

{

// comment out the one you don’t want

//cout << rec << endl;

produce_comma_delimited_output(rec);

}

}

}

while (1);

break;

case 4:

do

{

uis >> rec;

if (uis.eof()) break;

if (!uis)

{

cerr << " Error trying to read vector number " << ii

<< " from file " << argv[1] << endl;

exit(1);

}
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ii++;

}

while (1);

cout << " There are " << ii << " vectors" << endl;

break;

case 3:

cout << " Dimension = " << ndim << endl;

default:

;

}

}
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Chapter 3

A forestry model – estimating the size
distribution of wildfires

This examples highlights two features of AD Model Builder, the use of a numerical integration
routine within a statistical parameter estimation model and the use of the ad begin funnel

mechanism to reduce the size of temporary file storage required. It also provides a perfor-
mance comparison between AD Model Builder and Splus.

This problem investigates a model which predicts a relationship between the size and
frequency of wildfires. It is assumed that the probability of observing a wildfire in size
category i is given by Pi, where

log(Pi) = ln(Si − Si+1)− ln(S(1)).

If fi is the number of widfires observed to lie in size category i the log-likelihood function
for the problem is given by

l(τ, ν, β, σ) =
∑
i fi [ ln(Si − Si+1)− ln(S(1))] (3.1)

where Si is defined by the integral

Si =
∫∞
−∞ exp

{
− z2/2 + τ

(
− 1 + exp(− νaβi exp(σz))

)}
dz (3.2)

The parameters τ , ν, β, and σ are functions of the parameters of the original model,
and don’t have a simple interpretation. Fitting the model to data involves maximizing the
above log-likelihood (0.1). While the gradient can be calculated (in integral form), coding it
is cumbersome. Numerically maximizing the log-likelihood without specifying the gradient
is preferable.
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The parameter β is related to the fractal dimension of the perimeter of the fire. One
hypothesis of interest is that β = 2/3 which is related to hypotheses about the nature of the
mechanism by which fires spread. The AD Model Builder code for the model follows.

DATA_SECTION

int time0

init_int nsteps

init_int k

init_vector a(1,k+1)

init_vector freq(1,k)

int a_index;

number sum_freq

!! sum_freq=sum(freq);

PARAMETER_SECTION

init_number log_tau

init_number log_nu

init_number log_beta(2)

init_number log_sigma

sdreport_number tau

sdreport_number nu

sdreport_number sigma

sdreport_number beta

vector S(1,k+1)

objective_function_value f

INITIALIZATION_SECTION

log_tau 0

log_beta -.405465

log_nu 0

log_sigma -2

PROCEDURE_SECTION

tau=exp(log_tau);

nu=exp(log_nu);

sigma=exp(log_sigma);

beta=exp(log_beta);

funnel_dvariable Integral;

int i;

for (i=1;i<=k+1;i++)

{

a_index=i;

ad_begin_funnel();

Integral=adromb(&model_parameters::h,-3.0,3.0,nsteps);

S(i)=Integral;

}

f=0.0;

for (i=1;i<=k;i++)

{

dvariable ff=0.0;

// make the model stable for case when S(i)<=S(i+1)

// we have to subrtract s(i+1) from S(i) first or roundoff will

// do away with the 1.e-50.

f-=freq(i)*log(1.e-50+(S(i)-S(i+1)));

f+=ff;

}

f+=sum_freq*log(1.e-50+S(1));

FUNCTION dvariable h(const dvariable& z)

dvariable tmp;

tmp=exp(-.5*z*z + tau*(-1.+exp(-nu*pow(a(a_index),beta)*exp(sigma*z))) );
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return tmp;

REPORT_SECTION

int * pt=NULL;

report << " elapsed time = " << time(pt)-time0 << " seconds" << endl;

report << "nsteps = " << setprecision(10) << nsteps << endl;

report << "f = " << setprecision(10) << f << endl;

report << "a" << endl << a << endl;

report << "freq" << endl << freq << endl;

report << "S" << endl << S << endl;

report << "S/S(1)" << endl << setfixed << setprecision(6) << S/S(1) << endl;

report << "tau " << tau << endl;

report << "nu " << nu << endl;

report << "beta " << beta << endl;

report << "sigma " << sigma << endl;

The statement

Integral=adromb(&model_parameters::h,-3.0,3.0,nsteps);

invokes the numerical integration routine for the user-defined function h. The function must
be defined in a FUNCTION subsection. It can have any name, must be defined to take a const

dvariable& argument, and must return a dvariable. The values -3.0, 3.0 are the limits of
integration (effectively −∞, ∞ for this example). The integer argument nsteps determines
how accurate the integration will be. Higher values of nsteps will be more accurate but
greatly increase the amount of time necessary to fit the model. The basic strategy is to use
a moderate value for nteps, such as 6, and then to increase this value to see if the parameter
estimates change much.

FUNCTION dvariable h(const dvariable& z)

Numerical integration routines can be very computationally intensive, especially when they
must be computed to great accuracy. Such computations will require a lot of temporary
storage in AD Model Builder. Fortunately the output from such a routine is just one number,
the value of the integral. In automatic differentiation terminology a long set of computations
which produce just one number is known as a funnel. It is possbile to exploit the properties
of such a funnel to greatly reduce the amount of temporary storage required. All that is
necessary is to declare an object of type funnel dvariable and to assign the results of the
computation to it. At the beginning of the funnel a call to the function ad begin funnel

is made. There is quite a bit of overhead associated with the funnel construction so it
should not be used for very small calculations. However it is possible to put it in and test
the program to see whether it runs more quickly or not. The following modifed code will
produce exactly the same results, but without the funnel construction.

dvariable Integral; // change the definition of Integral

int i;

for (i=1;i<=k+1;i++)
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{

a_index=i;

// ad_begin_funnel(); // commment out this line

Integral=adromb(&model_parameters::h,-3.0,3.0,nsteps);

S(i)=Integral;

}

If the funnel construction is used on a portion of code which is not a funnel, incorrect
derivative values will be obtained. If this is suspected the funnel should be removed as in
the above example and the model run again.

The following report shows the amount of time required to run the model with a fxied value
of β for different values of the parameter nsteps. For practical perposes a vlaue of nsteps=8
gives enough accuracy so that the model could be fit in about 6 seconds.

elapsed time = 2 seconds nsteps = 6 f = 629.9846518

tau 9.851110 nu 8.913479 beta 0.666667 sigma 1.885570

elapsed time = 2 seconds nsteps = 7 f = 629.9851092

tau 9.850213 nu 8.835066 beta 0.666667 sigma 1.882967

elapsed time = 6 seconds nsteps = 8 f = 629.9851223

tau 9.850227 nu 8.836769 beta 0.666667 sigma 1.883024

elapsed time = 6 seconds nsteps = 9 f = 629.9851222

tau 9.850226 nu 8.836769 beta 0.666667 sigma 1.883024

elapsed time = 14 seconds nsteps = 10 f = 629.9851222

tau 9.850226 nu 8.836769 beta 0.666667 sigma 1.883024

The corresponding times when beta was estimated in an extra phase of the minimization
are given here. It as apparent tat the model parameters become unstable when beta is being
estimated. Twice the log-likelihood difference is 2(629.98−627.31) = 5.34 which is significant

elapsed time = 3 seconds nsteps = 6 f = 627.2919906

tau 20.729183 nu 427.816375 beta 0.180225 sigma 2.499445

elapsed time = 6 seconds nsteps = 7 f = 627.2952716

tau 21.868971 nu 80914.970724 beta 0.170392 sigma 4.232237

elapsed time = 17 seconds nsteps = 8 f = 627.297021

tau 22.858629 nu 2326271883.421848 beta 0.164749 sigma 7.653068

elapsed time = 62 seconds nsteps = 9 f = 627.2993787

tau 23.771061 nu 1652877622661391616.000000 beta 0.161073 sigma 14.451510

elapsed time = 123 seconds nsteps = 10 f = 627.3106333

tau 23.116097 nu 49753858778.636856 beta 0.159364 sigma 8.663666

elapsed time = 244 seconds nsteps = 11 f = 627.310624

tau 23.115275 nu 49009470510.133156 beta 0.159369 sigma 8.658643
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The Splus minimizing routine nlminb was used to fit the model. Fitting the three pa-
rameter model with Splus required approximately 280 seconds compared to 6 seconds with
AD Model Builder, so that AD Model Builder was approximately 45 times faster for this
simple problem.

For the four parameter problem with beta estimated, the SPLUS routine exited after
fourteen minutes and 30 seconds, reporting false convergence with a function value of 627.338.

The data for the example is

a

0.04 0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8 25.6 51.2 102.4 204.8

freq

167 84 61 29 19 17 4 4 1 0 1 1

where the first line contains the bounds for the size catagories and the second line contains
the number of observations in each size category. The Splus code with fixed beta for the
example is

obj.20<-

function(xvec)

{

#Objective for maxn in NLMINB NB vector argument

- llik.20(xvec[1], xvec[2], xvec[3])

}

llik.20<-

function(logtau, lognu, logsigma)

{

tau<-exp(logtau)

nu<-exp(lognu)

sigma<-exp(logsigma)

print(tau)

print(nu)

print(sigma)

llik <- 0

for(i in 1:(length(freq)+1)) {

Int[i]<-S.20(xa[i], tau, nu, sigma)

}

print(llik)

for(i in 1:length(freq)) {

llik <- llik + (freq[i] * (log(1.e-50+(Int[i]-Int[i+1]))

-log(1.e-50+Int[1])))

}

llik

}

S.20<-

function(da, tau, nu, sigma)

{

results <- integrate(intgnd.20, -3, 3, TAU = tau, NU = nu, SIGMA =

sigma, A = da)

if(results$message != "normal termination")

ans <- results$message
else ans <- results$integral
ans

}

intgnd.20<-
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function(z, A, TAU, NU, SIGMA)

{

exp(− 0.5 ∗ z2 + TAU ∗ (−1 + exp( − NU ∗ A2/3 ∗ exp(SIGMA ∗ z))))

}

To run the example in Splus with the same initial values use the following values

logtau 0 lognu 0 logsigma -2

The vector xa should contain the 13 a values while the vector freq should contain the
12 observed frequencies.
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Chapter 4

Economic Models – regime switching

An active field in macroeconomic modeling is the area of “regime switching”. This is dis-
cussed in greater generality in Hamilton (1994, chapter 22)1. The code for the following
example is based on the domain switching model taken from Hamilton (1989)2. This exam-
ple is not ideal for exploiting AD Model Builder’s greatest advantage, the ability to estimate
parameters in models with a large number of independent variables. However it does illus-
trate the efficacy of the use of higher (up to seven dimensional) arrays in AD Model Builder.

For this model The observed quantities are the Yt where

Yt = a0 + a1sti + Zt (4.1)

and the state variables Zt satisfy the fourth order autoregressive relationship

Zt = f1Zt−1 + f2Zt−2 + f3Zt−3 + f4Zt−4 + εt (4.2)

where the εt are independent, normally distributed random variables with mean 0 and stan-
dard deviation σ. These equations correspond to Hamilton’s equations 4.3. The state vari-
able sti is the realized value of a Markov process, St, whose evolution is described below.
This coefficient takes on the value i when the system is in state i. In the current example
there are two states so that st takes on one of the two values 0 or 1. We can solve 0.1 for the
values of Zt conditioned on the unknown value of the state at time t. Let zti be defined by

zi0 = Yt − a0

zt1 = Yt − a0 − a1

(4.3)

1Hamilton, James D. 1994. Time Series Analysis, Princeton, N.J.: Princeton University Press.
2A new approach to the economic analysis of nonstationary time series and the business cycle, Econometrica, 57(2):357-

384.
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Let (i, j, k, l,m) be a quintuplet of state values for the states at time t, t− 1, . . . , t− 4.
Define e(t, i, j, k, l,m), the realized values of the random variables εt by

e(t, i, j, k, l,m) = Yti − f1zt−1,j − f2zt−2,k − f3zt−3,l − f4zt−4,m

Notice that we due to the lags we can only begin to calculate values for the e(t, i, j, k, l,m)
in time period 5. It is assumed that the states transitions are given by a Markov process
with transition matrix P = (pij)

3
Hamilton seems to index his matrices with the column index first in some cases.

We use the row index first. Thus Hamilton’s pij may correspond to our pji. If we are in state j at time t the
probability of being in state i at time t+ 1 is pij.

If we consider the quintuple of the last 5 states to be the states of a new markov process
then we can define the transition matrix for this process by

(i, j, k, l,m)⇒ (0, i, j, k, l) with probability p0i

and
(i, j, k, l,m)⇒ (1, i, j, k, l) with probability p1i

If q(t − 1, j, k, l,m, n) is the probability of being in state (j, k, l,m, n) at period t − 1 the
probability of being in state q(t, i, j, k, l,m) at time period t is given by

q(t, i, j, l, ,m) =
∑
n

Pijq(t− 1, j, k, l,m, n)

In particular if
qb(t, i, j, k, l,m)

is the probability of being in the state (i, j, l,m, n) before observing Yt and
qa(t− 1, j, k, l,m, n) is the probability of being in the state (j, k, l,m, n) after observing
Yt−1 then

qb(t, i, j, k, l,m) =
∑
n Pijqa(t− 1j, k, l,m, n) (4.4)

Let Q(Yt|(i, j, k, l,m), Yt−1, Yt−2, Yt−3, Yt−4) be the conditional probability (or probability
density) for Yt given St = i, St−1 = j, St−2 = k, St−3 = l, St−4 = m,Yt−1, Yt−2, Yt−3, Yt−4.
Then, ignoring a constant term which is irrelevant for the calculations,

Q(Yt|(i, j, k, l,m), Yt−1, Yt−2, Yt−3, Yt−4) = exp(− e(i, j, k, l,m)2/2σ2)/σ (4.5)

Define u(Yt, i, j, k, l,m) by

u(Yt, i, j, k, l,m) = Q(Yt|(i, j, k, l,m), Yt−1, . . . , Yt−4)qb(t, i, j, k, l,m) (4.6)

Then qa(t, it, j, k, l,m) can be calculated from the relationship

qa(t, it, j, k, l,m) = u(Yt, i, j, k, l,m)/
∑
i,j,k,l,m u(Yt, i, j, k, l,m) (4.7)

The log-likelihood function for the parameters can be calculated from the
u(Yt, i, j, k, l,m). It is equal to∑

t log(
∑
i,j,k,l,m u(Yt, i, j, k, l,m)) (4.8)

The sums needed for the calculations in 0.9 can be saved from the calculations for 0.8).
3†††
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The complete AD Model Builder template (TPL) code is in the file ham4.tpl The C++

(CPP) code produced from this is in the file ham4.cpp Here is the TPL code split up with
comments.

DATA_SECTION

init_number a1init // read in the initial value of a1 with the data

init_int nperiods1 // the number of observations

int nperiods // nperiods-1 after differencing

!! nperiods=nperiods1-1;

init_vector yraw(1,nperiods1) //read in the observations

vector y(1,nperiods) // the differenced observations

!! y=100.*(--log(yraw(2,nperiods1)) - log(yraw(1,nperiods)));

int order

int op1

!! order=4; //order of the autoregressive process

!! op1=order+1;

int nstates // the number of states (expansion and contraction)

!! nstates=2;

The DATA SECTION contains constant quantities or “data”. This is in contrast to quan-
tities which depend on parameters being estimated which go into the PARAMETER SECTION.
All quantities in the PARAMETER SECTIONwith the init prefix are initial data which must
be read in from somewhere. By default they are read in from the file ROOT.dat (DAT file)
where ROOT is the root part of the name of the program being run (in this case ham4.exe),
so ham4.dat.

The first quantity is a number, a1init which will be used for initializing the value of
a1 in the program. This is a simple way to try different initial values for a1 simply by
modifying the input data file. Such procedures are often valuable to ensure that the correct
global value of the objective function has been found. The second quantity nperiods1 is the
number of data points in the file. Notice that as soon as a quantity has been defined it is
available to use for defining other quantities. The quantity nperiod does not have an init

before it so it will not be read in an must be calulated in terms of other quantities at some
point. Since we want it now it is calculated immediately.

!! nperiods=nperiods1-1;

The !! are used to insert any valid C++ code into the DATA SECTION or PARAMETER SECTION

(see LOCAL CALCS). This code will be executed verbatim (after the !! have been stripped off
of course) at the appropriate time. The init vector yraw is defined and give a size with
indices going from 1 to nperiods1. The nperiods1 data points will be read into yraw from
the DAT file. The data are immediately transformed and the resulting nperiods data point
are put into y.

PARAMETER_SECTION

init_vector f(1,order,1) // coefficients for the atuoregressive

// process

init_bounded_matrix Pcoff(0,nstates-1,0,nstates-1,.01,.99,2)

// determines the transition matrix for the markov process

init_number a0(5) // equation 4.3 in Hamilton (1989)

init_bounded_number a1(0.0,10.0,4);
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!! if (a0==0.0) a1=a1init; // set initial value for a1 as specified

// in the top of the file nham4.dat

init_bounded_number smult(0.01,1,3) // used in computing sigma

matrix z(1,nperiods,0,1) // computed via equation 4.3 in

// Hamilton (1989)

matrix qbefore(op1,nperiods,0,1); // prob. of being in state before

matrix qafter(op1,nperiods,0,1); // and after observing y(t)

number sigma // variance of epsilon(t) in equation 4.3

number var // square of sigma

sdreport_matrix P(0,nstates-1,0,nstates-1);

number ff1;

vector qb1(0,1);

matrix qb2(0,1,0,1);

3darray qb3(0,1,0,1,0,1);

4darray qb4(0,1,0,1,0,1,0,1);

6darray qb(op1,nperiods,0,1,0,1,0,1,0,1,0,1);

6darray qa(op1,nperiods,0,1,0,1,0,1,0,1,0,1);

6darray eps(op1,nperiods,0,1,0,1,0,1,0,1,0,1);

6darray eps2(op1,nperiods,0,1,0,1,0,1,0,1,0,1);

6darray prob(op1,nperiods,0,1,0,1,0,1,0,1,0,1);

objective_function_value ff;

The PARAMETER SECTION describes the parameters of the model, that is, the quantities
to be estimated. Quantities which which have the prefix init are akin to the independent
variables from which the log-likelihood function (or more generally any objective function)
can be calculated. Other objects are dependent variables which must be calculated from
the independent variables. The default behaviour of AD Model Builder is to read in initial
parameter values for the parameters from a PAR file if it finds one. Otherwise they are given
default values consistent with their type. The quantity f is a vector of four coefficents for the
autoregressive process. Pcoff is a 2× 2 matrix which is used to parameterize The transition
matrix P for the Markov process. Its values are restricted to lie between .01 and 0.99. smult
is a number used to parameterize sigma and var (which is the variance) as a multiple of
the mean squared residuals. This reparameterization undimensionalizes the calculation and
is a good technique to employ for nonlinear modeling in general. The transition matrix P

is defined to be of type sdreport matrix so that the standard deviation estimates for its
members will be included in the standard deviation report contained in the STD file. To date
AD Model Builder suports up to seven dimensional arrays. For historical reasons one and
two dimensional arrays are referred to as vector and matrix. This becomes a bit difficult
for higer dimensional arrays so they are simply referred to as 3darray,4darray,. . .,7darray.

PROCEDURE_SECTION

P=Pcoff;

dvar_vector ssum=colsum(P); // form a vector whose elements are the

// sums of the columns of P

ff+=norm2(log(ssum)); // this is a penalty so that the hessian will

// not be singular and the coefficients of P

// will be well defined

// normalize the transition matrix P so its columns sum to 1

int j;

for (j=0;j<=nstates-1;j++)

{
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for (int i=0;i<=nstates-1;i++)

{

P(i,j)/=ssum(j);

}

}

// get z into a useful format

dvar_matrix ztrans(0,1,1,nperiods);

ztrans(0)=y-a0;

ztrans(1)=y-a0-a1;

z=trans(ztrans);

int t,i,k,l,m,n;

qb1(0)=(1.0-P(1,1))/(2.0-P(0,0)-P(1,1)); // unconditional distribution

qb1(1)=1.0-qb1(0);

// for periods 2 through 4 there are no observations to condition

// the state distributions on so we use the unconditional distributions

// obtained by multiplying by the transition matrix P.

for (i=0;i<=1;i++) {

for (j=0;j<=1;j++) qb2(i,j)=P(i,j)*qb1(j);

}

for (i=0;i<=1;i++) {

for (j=0;j<=1;j++) {

for (k=0;k<=1;k++) qb3(i,j,k)=P(i,j)*qb2(j,k);

}

}

for (i=0;i<=1;i++) {

for (j=0;j<=1;j++) {

for (k=0;k<=1;k++) {

for (l=0;l<=1;l++) qb4(i,j,k,l)=P(i,j)*qb3(j,k,l);

}

}

}

// qb(5) is the probabilibility of being in one of 32

// states (32=2x2x2x2x2) in periods 5,4,3,2,1 before observing

// y(5)

for (i=0;i<=1;i++) {

for (j=0;j<=1;j++) {

for (k=0;k<=1;k++) {

for (l=0;l<=1;l++) {

for (m=0;m<=1;m++) qb(op1,i,j,k,l,m)=P(i,j)*qb4(j,k,l,m);

}

}

}

}

// now calculate the realized values for epsilon for all

// possible combinations of states

for (t=op1;t<=nperiods;t++) {

for (i=0;i<=1;i++) {

for (j=0;j<=1;j++) {

for (k=0;k<=1;k++) {

for (l=0;l<=1;l++) {

for (m=0;m<=1;m++) {

eps(t,i,j,k,l,m)=z(t,i)-phi(z(t-1,j),
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z(t-2,k),z(t-3,l),z(t-4,m),f);

eps2(t,i,j,k,l,m)=square(eps(t,i,j,k,l,m));

}

}

}

}

}

}

// calculate the mean squared "residuals" for use in

// "undimensionalized" parameterization of sigma

dvariable eps2sum=sum(eps2);

var=smult*eps2sum/(32.0*(nperiods-4));

sigma=sqrt(var);

for (t=op1;t<=nperiods;t++) {

for (i=0;i<=1;i++) {

for (j=0;j<=1;j++) {

for (k=0;k<=1;k++)

prob(t,i,j,k)=exp(eps2(t,i,j,k)/(-2.*var))/sigma;

}

}

}

for (i=0;i<=1;i++) {

for (j=0;j<=1;j++) {

for (k=0;k<=1;k++) {

for (l=0;l<=1;l++) {

for (m=0;m<=1;m++) qa(op1,i,j,k,l,m)= qb(op1,i,j,k,l,m)*

prob(op1,i,j,k,l,m);

}

}

}

}

ff1=0.0;

qbefore(op1,0)=sum(qb(op1,0));

qbefore(op1,1)=sum(qb(op1,1));

qafter(op1,0)=sum(qa(op1,0));

qafter(op1,1)=sum(qa(op1,1));

dvariable sumqa=sum(qafter(op1));

qa(op1)/=sumqa;

qafter(op1,0)/=sumqa;

qafter(op1,1)/=sumqa;

ff1-=log(1.e-50+sumqa);

for (t=op1+1;t<=nperiods;t++) { // notice that the t loop includes 2

for (i=0;i<=1;i++) { // i,j,k,l,m blocks

for (j=0;j<=1;j++) {

for (k=0;k<=1;k++) {

for (l=0;l<=1;l++) {

for (m=0;m<=1;m++) {

qb(t,i,j,k,l,m).initialize();

// here is where having 6 dimensional arrays makes the

// formula for moving the state distributions form period

// t-1 to period t easy to program and understand.

// Throw away n and accumulate its two values into next

// time period after multiplying by transition matrix P

for (n=0;n<=1;n++) qb(t,i,j,k,l,m)+=P(i,j)*qa(t-1,j,k,l,m,n);

}

}
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}

}

}

for (i=0;i<=1;i++) {

for (j=0;j<=1;j++) {

for (k=0;k<=1;k++) {

for (l=0;l<=1;l++) {

for (m=0;m<=1;m++) qa(t,i,j,k,l,m)=qb(t,i,j,k,l,m)*

prob(t,i,j,k,l,m);

}

}

}

}

qbefore(t,0)=sum(qb(t,0));

qbefore(t,1)=sum(qb(t,1));

qafter(t,0)=sum(qa(t,0));

qafter(t,1)=sum(qa(t,1));

dvariable sumqa=sum(qafter(t));

qa(t)/=sumqa;

qafter(t,0)/=sumqa;

qafter(t,1)/=sumqa;

ff1-=log(1.e-50+sumqa); // add small constant to avoid log(0)

}

ff+=ff1; //ff1 is minus the log-likelihood

ff+=.1*norm2(f); // add small penalty to stabilize estimation

The PROCEDURE SECTION is where the calculation of the objective function are carried
out. First the transition matrix P is calculated from the Pcoff. The function colsum forms a
vector whose elements are the column sums of the matrix. This is used to normalize P so
that its columns sum to 1. A penalty is added to the objective function for the colum sums
so that the hessian matrix with respect to the independent variables will not be singular.
This does not affect the “statistical” properties of the parameters of interest. The matrix z

is calculated using a transformed matrix because AD Model Builder deals with vector rows
better than columns. The probability distribution for the states in period 1, qb1 is set equal
to the uncondtional distribution for a Markov process in terms of its transition matrix, P,
as discussed in Hamilton (1994). The transition matrix is used to compute the probability
distribution of the states in periods (2, 1), (3, 2, 1), (4, 3, 2, 1), and finally (5, 4, 3, 2, 1). For
the last quintuplet this is the probability distribution before observing y(5). The quantities
eps in the code correspond to the possible realized values of the random variable ε. The
quantities qa and qb correspond to qa and qb in the documentation. The sum function is
defined for arrays of any dimension and simply forms the sum of all the components. In
AD Model Builder if xx is an n dimensional array then x(i) is an n-1 dimensional array. So
the statement

qbefore(t,0)=sum(qb(t,0));

takes the sum of the probabilities for the sixteen quintuples of states at time period t through
t-4 for which the state at time period t is 0. These are used in the REPORT SECTION to write
out a report of the estimated state probabilities at time period t before and after observing
y(t).
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REPORT_SECTION

dvar_matrix out(1,2,op1,nperiods);

dvar_matrix out1(1,1,op1,nperiods);

out(1)=trans(qbefore)(1);

out(2)=trans(qafter)(1);

{

ofstream ofs("qbefore.rep");

out1(1)=trans(qbefore)(0);

ofs << trans(out1)<< endl;

}

{

ofstream ofs("qafter.rep");

out1(1)=trans(qafter)(0);

ofs << trans(out1) << endl;

}

report << "#qbefore qafter" << endl;

report << setfixed << setprecision(3) << setw(7) << trans(out) << endl;

The REPORT SECTION is used to report any result in a manner not already carried out by
the models default behaviour. The probabilites of being in state 0 before and after observing
y(t) are printed into the files qbefore.rep and qafter.rep. These vectors were stored in
files so that they could be easily imported into graphing programs. The results are very
similar to figure 1 in Hamilton (1989) as one might hope.

RUNTIME_SECTION

maximum_function_evaluations 20000

convergence_criteria 1.e-6

The maximum function evaluations 20000 will simply let the program run a long time
by setting the maximum number of function evaluations in the function minimizer equal to
20,000 (nowhere near this many are actually needed.) The convergence criteria 1.e-6 was
needed becuase the default value of 1.e-4 caused the program to exit from the miniization
before convergence had been achieved.

TOP_OF_MAIN_SECTION

arrmblsize=500000;

gradient_structure::set_GRADSTACK_BUFFER_SIZE(200000);

gradient_structure::set_CMPDIF_BUFFER_SIZE(2100000);

The TOP OF MAIN SECTION is for including code which will be included at the top
of the main() function in the C++ program. Any desired legal code may be in-
cluded. There are a number of common statements which are used to control aspects of
AD Model Builder’s performance. The statement arrmblsize=500000; reserves 500,000
bytes of memory for variable objects. If it is not large enough a message will be
printed out at run time. See the index for references to more discussion of this mat-
ter. The statements gradient structure::set GRADSTACK BUFFER SIZE(200000); and
gradient structure::set CMPDIF BUFFER SIZE(2100000); set the amount of memory
that AD Model Builder reserves for variable objects. Setting these is a matter of tuning
for optimum performance. If you have a lot of memory available making them larger may
improve performance. However models will run without including these statements as long
as there is enough memory for AD Model Builder’s temporary files.
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GLOBALS_SECTION

#include <admodel.h>

dvariable phi(const dvariable& a1,const dvariable& a2,const dvariable& a3,

const dvariable& a4,const dvar_vector& f)

{

return a1*f(1)+a2*f(2)+a3*f(3)+a4*f(4);

}

The GLOBALS SECTION is used to include statements at the top of the file containing
the CPP program. This is generally where global declarations are made in C++, hence its
name. However it may be used for any legal statments such as including header files for the
users data structures etc. In this case it has been used to define the function phi which
is used to simplify the code for the model’s calculations. The header file admodel.hpp

is included to define the AUTODIF structures used in the definition of the function. This
header is automatically included near the top of the file, but this would be too late as
GLOBALS SECTION material is included first.

The parameter estimates for the initial parameters are written into a file HAM4.PAR. This is
an ASCII file wich can be easily read. (The results are also stored in a binary file HAM4.BAR

which can be used to restart the model with more accurate parameters estimates.)

# Objective function value = 60.8934

# f:

0.0139989 -0.0569580 -0.246292 -0.212250

# Pcoff:

0.754133 0.0955834

0.245118 0.900333

# a0:

-0.357964

# a1:

1.52138

# smult:

0.281342

The estimates are almost identical to those reported in Hamilton (1989)4 The first
line reports the value of the log-likelihood function. This value can be used in hypothesis
(likelihood-ratio) tests. the file ham5.para for the fifth order autoregressive model fit to
the data in Hamilton (1989) is shown below. there is one more parameter in this model.
Twice the difference in the log-likelihood functions is 2(60.89− 59.60) = 2.58. For one extra
parameter the 95% significance level is 3.84, the improvement in fit is not significant.

# Objective function value = 59.6039

# f:

-0.0474771 -0.113829 -0.241966 -0.225535 -0.192585

# Pcoff:

4Our method for parameterizing the intial state probability distribution qb1 is slightly different from Hamilton’s which

would explain the small discrepancy.
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0.779245 0.0951739

0.219775 0.900719

# a0:

-0.271318

# a1:

1.46301

# smult:

0.259541

The plot of qa and qb demonstrates the extra information about the probability distri-
bution of the current state contained in in the current value of y(t).
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The standard deviation and correlation report for the model are in the file ham4.cor
reproduced below.

index name value std dev 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 f 1.39e-02 1.20e-01 1.00

2 f -5.69e-02 1.37e-01 0.33 1.00

3 f -2.46e-01 1.06e-01 0.33 0.29 1.00

4 f -2.12e-01 1.10e-01 0.43 0.26 0.17 1.00

5 Pcoff 7.54e-01 5.39e-01 0.00 0.04 0.01 0.00 1.00

6 Pcoff 9.55e-02 7.58e-02 0.04 0.05 0.02 0.03 -0.04 1.00

7 Pcoff 2.45e-01 1.97e-01 -0.01 -0.11 -0.03 -0.01 0.77 0.04 1.00

8 Pcoff 9.00e-01 6.20e-01 -0.00 -0.00 -0.00 -0.00 0.00 0.83 -0.00 1.00

9 a0 -3.57e-01 2.65e-01 0.27 0.56 0.25 0.21 0.08 0.07 -0.23 -0.00 1.00

10 a1 1.52e+00 2.63e-01 -0.31 -0.57 -0.29 -0.25 -0.07 -0.04 0.21 0.00 -0.96 1.00

11 smult 2.81e-01 1.25e-01 0.54 0.69 0.48 0.45 0.06 0.05 -0.17 -0.00 0.82 -0.84 1.00

12 P 7.54e-01 9.65e-02 0.02 0.24 0.07 0.03 0.17 -0.08 -0.48 0.00 0.47 -0.44 0.36 1.00

13 P 9.59e-02 3.77e-02 0.09 0.10 0.04 0.06 -0.02 0.49 0.08 -0.05 0.14 -0.09 0.11 -0.16 1.00

14 P 2.45e-01 9.65e-02 -0.02 -0.24 -0.07 -0.03 -0.17 0.08 0.48 -0.00 -0.47 0.44 -0.36 -1.00 0.16 1.00

15 P 9.04e-01 3.77e-02 -0.09 -0.10 -0.04 -0.06 0.02 -0.49 -0.08 0.05 -0.14 0.09 -0.11 0.16 -1.00 -0.16 1.00

Hamilton (1989, page 372) remarks that investigating higher order autoregressive processes
might be a fruitful area of research. The form of the model is. The first extension of the
model is a fifth order autoregressive process.

Yt = a0 + a1sti + Zt (4.9)

and the state variables Zt satisfy the fourth order autoregressive relationship

Zt = f1Zt−1 + f2Zt−2 + f3Zt−3 + f4Zt−4 + f5Zt−5 + εt (4.10)

which extend equations 0.1 and 0.2. The TPL file ham5.tpl for the fifth order autoregressive
model is reproduced here. By employing higher dimensional arrays the conversion of the
TPL file from a fourth order autoregressive process to a fifth order one is largely formal. An
experienced AD Model Builder user can carry out the modifications in under 1 hour. Places
where modifications were made were tagged with the comment tt //!!5.

DATA_SECTION

init_number a1init // read in the initial value of a1 with the data

init_int nperiods1 // the number of observations
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int nperiods // nperiods-1 after differencing

!! nperiods=nperiods1-1;

init_vector yraw(1,nperiods1) //read in the observations

vector y(1,nperiods) // the differenced observations

!! y=100.*(--log(yraw(2,nperiods1)) - log(yraw(1,nperiods)));

int order

int op1

!! order=5; // !!5 order of the autoregressive process

!! op1=order+1;

int nstates // the number of states (expansion and contraction)

!! nstates=2;

PARAMETER_SECTION

init_vector f(1,order,1) // coefficients for the atuoregressive

// process

init_bounded_matrix Pcoff(0,nstates-1,0,nstates-1,.01,.99,2)

// determines the transition matrix for the markov process

init_number a0(5) // equation 4.3 in Hamilton (1989)

init_bounded_number a1(0.0,10.0,4);

!! if (a0==0.0) a1=a1init; // set initial value for a1 as specified

// in the top of the file nham4.dat

init_bounded_number smult(0.01,1,3) // used in computing sigma

matrix z(1,nperiods,0,1) // computed via equation 4.3 in

// Hamilton (1989)

matrix qbefore(op1,nperiods,0,1); // prob. of being in state before

matrix qafter(op1,nperiods,0,1); // and after observing y(t)

number sigma // variance of epsilon(t) in equation 4.3

number var // square of sigma

sdreport_matrix P(0,nstates-1,0,nstates-1);

number ff1;

vector qb1(0,1);

matrix qb2(0,1,0,1);

3darray qb3(0,1,0,1,0,1);

4darray qb4(0,1,0,1,0,1,0,1);

5darray qb5(0,1,0,1,0,1,0,1,0,1); // !!5

7darray qb(op1,nperiods,0,1,0,1,0,1,0,1,0,1,0,1);

7darray qa(op1,nperiods,0,1,0,1,0,1,0,1,0,1,0,1);

7darray eps(op1,nperiods,0,1,0,1,0,1,0,1,0,1,0,1);

7darray eps2(op1,nperiods,0,1,0,1,0,1,0,1,0,1,0,1);

7darray prob(op1,nperiods,0,1,0,1,0,1,0,1,0,1,0,1);

objective_function_value ff;

PROCEDURE_SECTION

P=Pcoff;

dvar_vector ssum=colsum(P); // forma a vector whose elements are the

// sums of the columns of P

ff+=norm2(log(ssum)); // this is a penalty so that the hessian will

// not be singular and the coefficients of P

// will be well defined

// normalize the transition matrix P so its columns sum to 1

int j;

for (j=0;j<=nstates-1;j++)

{

for (int i=0;i<=nstates-1;i++)

{

P(i,j)/=ssum(j);

}

}

dvar_matrix ztrans(0,1,1,nperiods);
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ztrans(0)=y-a0;

ztrans(1)=y-a0-a1;

z=trans(ztrans);

int t,i,k,l,m,n,p;

qb1(0)=(1.0-P(1,1))/(2.0-P(0,0)-P(1,1)); // unconditional distribution

qb1(1)=1.0-qb1(0);

// for periods 2 through 4 there are no observations to condition

// the state distributions on so we use the unconditional distributions

// obtained by multiplying by the transition matrix P.

for (i=0;i<=1;i++) {

for (j=0;j<=1;j++) qb2(i,j)=P(i,j)*qb1(j);

}

for (i=0;i<=1;i++) {

for (j=0;j<=1;j++) {

for (k=0;k<=1;k++) qb3(i,j,k)=P(i,j)*qb2(j,k);

}

}

for (i=0;i<=1;i++) {

for (j=0;j<=1;j++) {

for (k=0;k<=1;k++) {

for (l=0;l<=1;l++) qb4(i,j,k,l)=P(i,j)*qb3(j,k,l);

}

}

}

// !!5

for (i=0;i<=1;i++) {

for (j=0;j<=1;j++) {

for (k=0;k<=1;k++) {

for (l=0;l<=1;l++) {

for (m=0;m<=1;m++) qb5(i,j,k,l,m)=P(i,j)*qb4(j,k,l,m);

}

}

}

}

// qb(6) is the probabilibility of being in one of 64

// states (64=2x2x2x2x2x2) in periods 5,4,3,2,1 before observing

// y(6)

for (i=0;i<=1;i++) {

for (j=0;j<=1;j++) {

for (k=0;k<=1;k++) {

for (l=0;l<=1;l++) {

for (m=0;m<=1;m++) { // !!5

for (n=0;n<=1;n++) qb(op1,i,j,k,l,m,n)=P(i,j)*qb5(j,k,l,m,n);

}

}

}

}

}

// now calculate the realized values for epsilon for all

// possible combinations of states

for (t=op1;t<=nperiods;t++) {

for (i=0;i<=1;i++) {

for (j=0;j<=1;j++) {

for (k=0;k<=1;k++) {
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for (l=0;l<=1;l++) {

for (m=0;m<=1;m++) {

for (n=0;n<=1;n++) { // !!5

eps(t,i,j,k,l,m,n)=z(t,i)-phi(z(t-1,j),

z(t-2,k),z(t-3,l),z(t-4,m),z(t-5,n),f);

eps2(t,i,j,k,l,m,n)=square(eps(t,i,j,k,l,m,n));

}

}

}

}

}

}

}

// calculate the mean squared "residuals" for use in

// "undimensionalized" parameterization of sigma

dvariable eps2sum=sum(eps2);

var=smult*eps2sum/(64.0*(nperiods-4)); //!!5

sigma=sqrt(var);

for (t=op1;t<=nperiods;t++) {

for (i=0;i<=1;i++) {

for (j=0;j<=1;j++) {

for (k=0;k<=1;k++) {

for (l=0;l<=1;l++) //!!5

prob(t,i,j,k,l)=exp(eps2(t,i,j,k,l)/(-2.*var))/sigma;

}

}

}

}

for (i=0;i<=1;i++) {

for (j=0;j<=1;j++) {

for (k=0;k<=1;k++) {

for (l=0;l<=1;l++) {

for (m=0;m<=1;m++) {

for (n=0;n<=1;n++) qa(op1,i,j,k,l,m,n)= qb(op1,i,j,k,l,m,n)*

prob(op1,i,j,k,l,m,n);

}

}

}

}

}

ff1=0.0;

qbefore(op1,0)=sum(qb(op1,0));

qbefore(op1,1)=sum(qb(op1,1));

qafter(op1,0)=sum(qa(op1,0));

qafter(op1,1)=sum(qa(op1,1));

dvariable sumqa=sum(qafter(op1));

qa(op1)/=sumqa;

qafter(op1,0)/=sumqa;

qafter(op1,1)/=sumqa;

ff1-=log(1.e-50+sumqa);

for (t=op1+1;t<=nperiods;t++) { // notice that the t loop includes 2

for (i=0;i<=1;i++) { // i,j,k,l,m blocks

for (j=0;j<=1;j++) {

for (k=0;k<=1;k++) {

for (l=0;l<=1;l++) {

for (m=0;m<=1;m++) {
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for (n=0;n<=1;n++) { //!!5

qb(t,i,j,k,l,m,n).initialize();

// here is where having 6 dimensional arrays makes the

// formula for moving the state distributions form period

// t-1 to period t easy to program and understand.

// Throw away n and accumulate its two values into next

// time period after multiplying by transition matrix P

for (p=0;p<=1;p++) qb(t,i,j,k,l,m,n)+=P(i,j)*

qa(t-1,j,k,l,m,n,p);

}

}

}

}

}

}

for (i=0;i<=1;i++) {

for (j=0;j<=1;j++) {

for (k=0;k<=1;k++) {

for (l=0;l<=1;l++) {

for (m=0;m<=1;m++) { // !!5

for (n=0;n<=1;n++) qa(t,i,j,k,l,m,n)=qb(t,i,j,k,l,m,n)*

prob(t,i,j,k,l,m,n);

}

}

}

}

}

qbefore(t,0)=sum(qb(t,0));

qbefore(t,1)=sum(qb(t,1));

qafter(t,0)=sum(qa(t,0));

qafter(t,1)=sum(qa(t,1));

dvariable sumqa=sum(qafter(t));

qa(t)/=sumqa;

qafter(t,0)/=sumqa;

qafter(t,1)/=sumqa;

ff1-=log(1.e-50+sumqa);

}

ff+=ff1;

ff+=.1*norm2(f);

REPORT_SECTION

dvar_matrix out(1,2,op1,nperiods);

out(1)=trans(qbefore)(1);

out(2)=trans(qafter)(1);

{

ofstream ofs("qbefore4.tex");

for (int t=5;t<=nperiods;t++)

{

ofs << (t-4)/100. << " " << qbefore(t,0) << endl;

}

}

{

ofstream ofs("qafter4.tex");

for (int t=5;t<=nperiods;t++)

{

ofs << (t-4)/100. << " " << qafter(t,0) << endl;

}

}

report << "#qbefore qafter" << endl;
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report << setfixed << setprecision(3) << setw(7) << trans(out) << endl;

RUNTIME_SECTION

maximum_function_evaluations 20000

convergence_criteria 1.e-6

TOP_OF_MAIN_SECTION

arrmblsize=500000;

gradient_structure::set_GRADSTACK_BUFFER_SIZE(400000);

gradient_structure::set_CMPDIF_BUFFER_SIZE(2100000);

gradient_structure::set_MAX_NVAR_OFFSET(500);

GLOBALS_SECTION

#include <fvar.hpp>

// !!5

dvariable phi(const dvariable& a1,const dvariable& a2,const dvariable& a3,

const dvariable& a4,const dvariable& a5,const dvar_vector& f)

{

return a1*f(1)+a2*f(2)+a3*f(3)+a4*f(4)+a5*f(5);

}
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Chapter 5

Econometric Models – simultaneous
equations

For each t, 1 ≤ t ≤ T let yt be an n dimensional vector and xt be an n dimensional vector.
Let B and Γ be (n× n) and (n×m) matrices and suppose that the relationship

Byt + Γxt = ut

holds where the ut are n dimensional random vectors of disturbances. The yt are the en-
dogenous variables in the system. The xt are predetermined variables in the sense that they
are independent of ut. Note that for autoregressive models the xt may contain values of yj
for j < i. In general not all of the coefficients of B and Γ are estimable. Interesting cases
have special structure which are determined by the particular parameterization of of B, Γ
and D. In particular it is generally assumed that Bii = 1 for 1 ≤ i ≤ n and that B−1 exists.

Assume that for each t, ut has a multivariate normal distribution with mean 0 and covariance
matrix D. The log-likelihood function for B,Γ, and D is given by

L(B,Γ, D) = T/2 log(|B|2)− T/2 log(|D|)− 1/2
∑T
t=1[Byt + Γxt]

′D−1[Byt + Γxt] (5.1)

If there are no constraints on D the value of D which maximizes 5.1 can be solved for in
terms of the other parameters and observations.This value D̂ is given by

D̂ = 1/T
∑T
t=1[Byt + Γxt]

′[Byt + Γxt] (5.2)

substituting this value into (0.1) it can be shown that

1/2
T∑
t=1

[Byt + Γxt]
′D̂−1[Byt + Γxt]
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is a constant which can be ignored for the maximization so that equation 5.2

L̃(B,Γ) = T/2 log(|B|2)− T/2 log(|D̂|) (5.3)

and the FIML estimates for B and Γ can be found by maximizing L̃(B,Γ).

When there are constraints on the parameters of D then D̃ is no longer the maximum
likelihood estimate for D so it is necessary to maximize 5.1 which is in general a numeri-
cally unstable problem. To successfully carry out the optimization it is necessary to obtain
reasonable initial estimates for the parameters of B and Γ and to use a good method for
parametrerizing D. Initial estimates for B and Γ can be obtained from ordinary least squares
(OLS), that is find the values of B and Γ which minimize

T∑
t=1

‖yt −B−1Γxt‖2

To parameterize D note that D̂ is an estimate of D so that we can parameterize D by

D = AD̂A′

where A is a lower triangular matrix. If U is the choleski decomposition of D and Û is

the choleski decomposition of D̂ then A = Û−1U . It follows that A should be close to the
identity matrix which is a good initial estimate for A.

To evaluate the model’s performance simulated data were generated. The form of the model
is

yt1 + yt4 + yt5 − 2 + 0.45yt−1,1 = ut1
0.1yt1 + yt2 + 2.0yt5 − 1− 0.6yt−1,1 + 0.25yt−1,2 = ut2

0.3yt1 − 0.2yt2 + yt3 + 1 = ut3
1.4yt2 − 3.1yt3 + yt4 + 1 = ut4

yt3 + yt4 + yt5 = ut5
(5.4)

with a covariance matrix

D =


0.512 0.32 0.256 −1.28 0
0.32 0.328 −0.16 −0.8 0
0.256 −0.16 1.728 0.16 0.8
−1.28 −0.8 0.16 4.8 0.8

0 0 0.8 0.8 0.928


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B =


1 0 0 1 1

0.1 1 0 0 2
0.3 −0.2 1 0 0
0 1.4 −3.1 1 0
0 0 1 1 1



Γ =


−2 0.45 0
−1 −0.6 0.25
1 0 0
1 0 0
0 0 0


For this model n = 5, m = 3, and xt = (1, yt−1,1, yt−1,2).

The eigenvalues of D are (0.006610.135830.49622.211625.44573) Having a small eigen-
value tends to produce simulated data that are difficult to analyze.

Forty time periods of data were generated by the simulator. The simulated y values are:

1.63252 3.00223 1.70246 1.34813 -1.12202

-2.87857 -7.72402 -3.88482 -1.24196 4.71024

1.12975 -7.92719 -3.85188 -2.33007 4.2984

1.48112 -2.25692 -1.15585 -2.26166 3.01061

-2.91887 -5.65015 -2.74198 -0.695815 4.51346

2.29715 0.524946 0.0268777 1.07624 -0.0898846

1.32854 6.17993 2.51613 1.67248 -2.39914

0.5661 -2.53219 -0.966376 0.00820516 1.76543

0.353591 -3.81146 -2.04431 -1.48574 2.67208

-2.22887 -2.33436 -1.66284 0.646399 2.26448

2.29896 -6.42238 -2.41106 -1.70633 3.50028

0.145878 1.85161 0.646578 -0.380955 0.709761

-0.779376 -7.60611 -3.79636 -1.63017 4.02658

-0.107371 -5.61361 -2.35816 -1.77719 3.67762

0.662221 -5.78832 -2.19632 -2.03071 4.37961

-0.570661 -7.42505 -3.28544 -2.94125 5.19422

0.0953742 -1.80617 -1.06915 -0.0320784 2.00018

-0.406986 -4.96143 -2.8084 -0.948902 3.1811

1.07219 -7.92608 -2.95484 -3.17022 5.12702

-0.495144 1.33611 -0.357291 -0.0260083 0.360653

-0.637878 -8.76117 -3.81638 -1.77116 4.82796

1.59717 -3.18571 -1.72708 -1.93975 2.79462

-1.13013 -2.20942 -1.30198 -0.603895 2.29486

-1.0103 -7.90106 -3.65303 -1.07367 4.66283

-1.02985 -3.00268 -1.63388 0.309992 2.97876

0.176882 -7.96282 -3.60299 -1.86289 4.86943

1.16904 -1.07952 -0.0969977 -0.74563 2.38399

-0.636119 -2.84841 -1.43676 -0.38474 2.51142

-1.72929 -5.39866 -2.51289 0.0978131 3.786

3.56302 3.79343 2.05613 1.43836 -1.2029

0.15806 -0.863882 -0.302119 -1.19212 1.38518

1.37323 -1.94413 -0.537631 -0.751294 1.42083

-0.404075 -8.53817 -3.58618 -3.33976 5.69071

0.362091 -5.78568 -2.46635 -2.33359 4.21899

-2.26158 -12.7075 -6.07426 -3.62455 8.49292

1.20438 -5.44629 -2.30249 -2.02905 3.82742
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1.41463 -1.71734 -0.788698 -1.90306 2.2595

0.897156 1.28039 0.693579 0.318737 0.385857

-0.0330384 -1.55642 -0.189474 0.312385 1.57168

1.5747 0.827181 1.26032 0.813312 0.270432

For the x values the first time periods data x0 = (1, 1, 2) were supplied. The simulated x
values are:

1 1 2

1 1.63252 3.00223

1 -2.87857 -7.72402

1 1.12975 -7.92719

1 1.48112 -2.25692

1 -2.91887 -5.65015

1 2.29715 0.524946

1 1.32854 6.17993

1 0.5661 -2.53219

1 0.353591 -3.81146

1 -2.22887 -2.33436

1 2.29896 -6.42238

1 0.145878 1.85161

1 -0.779376 -7.60611

1 -0.107371 -5.61361

1 0.662221 -5.78832

1 -0.570661 -7.42505

1 0.0953742 -1.80617

1 -0.406986 -4.96143

1 1.07219 -7.92608

1 -0.495144 1.33611

1 -0.637878 -8.76117

1 1.59717 -3.18571

1 -1.13013 -2.20942

1 -1.0103 -7.90106

1 -1.02985 -3.00268

1 0.176882 -7.96282

1 1.16904 -1.07952

1 -0.636119 -2.84841

1 -1.72929 -5.39866

1 3.56302 3.79343

1 0.15806 -0.863882

1 1.37323 -1.94413

1 -0.404075 -8.53817

1 0.362091 -5.78568

1 -2.26158 -12.7075

1 1.20438 -5.44629

1 1.41463 -1.71734

1 0.897156 1.28039

1 -0.0330384 -1.55642

For the estinmation process all the elements of the matrices B and Γ with value 0 were fixed
at theere correct value. The FIML estimates for unconstrained covariance matrix D are
given below.
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B =


1 0 0 0.364395 0.364395

0.238411 1 0 0 1.37593
0.042875 −0.330484 1 0 0

0 1.93026 −4.90367 1 0
0 0 1.06339 1.09851 1



Γ =


−0.917978 0.431377 0
0.473915 −0.491422 0.19981
0.441089 0 0
−0.126701 0 0

0 0 0



D =


0.938236 0.843743 0.506127 −1.38383 0.314262
0.843743 1.55844 0.732235 −0.591771 1.37195
0.506127 0.732235 0.430091 −0.805866 0.62244
−1.38383 −0.591771 −0.805866 4.18591 −0.0363513
0.314262 1.37195 0.62244 −0.0363513 1.75939



Since D51 = 0, and D52 = 0, these values were not well estimated by the unconstrained
FIML procedure. Suppose that we know that their values should be 0 and that the value of
D55 ≤ 1.0. We incorporate this knowledge into the model by using penalty functions.

B =


1 0 0 0.594218 0.594218

−0.321482 1 0 0 1.97809
0.0416175 −0.365572 1 0 0

0 2.48468 −6.10763 1 0
0 0 0.968057 1.02738 1



Γ =


r − 1.3418 0.448342 0
−1.14717 −0.593754 0.183788
0.372114 0 0
−0.0640792 0 0

0 0 0



D =


0.593424 −0.325467 0.298836 −1.43231 0.00401209
−0.325467 0.650371 −0.234747 0.441841 4.48456e− 06
0.298836 −0.234747 0.258147 −0.900105 0.255262
−1.43231 0.441841 −0.900105 6.13619 0.180376

0.00401209 4.48456e− 06 0.255262 0.180376 1.00262


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This is the code in the TPL file split up by sections and commented on. The DATA SECTION

defines the data and some size aspects of the model structure. Objects which are prefixed
by init will be read in from the data file.

// This version incorporates constraints via penalty functions.

//This is sample code to determine the parameters of a

//sim,ultaneous equations model. The notation follows

//that of Hamilton, Times Series Analysis, chapter 9.

//the general form of the model is

//

// By_t + Gamma x_t =u_t

//

//for t=1,...,T. The u_t have covariance matrix D.

DATA_SECTION

init_int T // the number of observations

init_int dimy // dimension of the vector of

// endogenousavariables

init_int dimx // dimension of the vector of

// predetermined variables

init_int num_Bpar // the number of parameters in

// the elements of B to be estimated

init_int num_Gpar // the number of parameters in

// the elements of Gamma to be estimated

init_matrix y(1,T,1,dimy) // the y_t

init_matrix x(1,T,1,dimx) // the x_t

int dimy1

!! dimy1=dimy*(dimy+1)/2; // size of symmetric matrix

The PARAMETER SECTION describes the model’s parameters. Objects which are prefixed
by init are the independent variables of the model. For example Bpar is used to parameter-
ize the nonzero elements of B. ch Dpar is used to parameterize the lower triangular matrix of
the correction from emp D to the covariance matrix D. The minimization is done in a number
of phases. The parameter kx is used to have a parameter which becomes active in phase 4,
so that the minimization will take place in four stages. This parameter does not enter into
the “real” part of the model.

PARAMETER_SECTION

init_vector Bpar(1,num_Bpar)

init_vector Gpar(1,num_Gpar)

init_vector ch_Dpar(1,dimy1,2)

matrix B(1,dimy,1,dimy)

matrix D(1,dimy,1,dimy) // the covariance matrix for the

// disturbances u_t

matrix emp_D(1,dimy,1,dimy) // the covariance matrix for the

matrix Gamma(1,dimy,1,dimx)

matrix ch_D(1,dimy,1,dimy)

matrix z(1,T,1,dimy);

objective_function_value f

init_number kx(4);

The PROCEDURE SECTION is where the models calculations are carried out. It is split up
into a set of functions wheere the model specific pieces of code (different code for different
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models) are located. Finally the optimization for parameter estimation is calculated. Thsi
depends on the phase of the optimzation procedure. A switch statment is used to vary
the form of the objective function depending on the phase. The function current phase()

return the number of the current phase of the optimization. The function last phase()

returns 1 (“true”) if the current phase is the last phase of the optimization. Quadratic
penalty functions are put on the model’s parameters and the penalty weights are decreased
in subsequent phase. this proecedure helsp to stabilize the optimzation when several model
parametes are highly correlated.

PROCEDURE_SECTION

fill_B(); // this will vary from model to model

fill_Gamma(); // this will vary from model to model

calculate_empirical_copvariance_matrix();

fill_D(); // this will vary from model to model

calculate_constraints(); // this will vary from model to model

int sgn;

switch (current_phase())

{

case 1:

{

f+=0.1*norm2(Bpar);

f+=0.1*norm2(Gpar);

f+=0.1*norm2(ch_Dpar);

dvar_matrix Binv=inv(B);

for (int t=1;t<=T;t++)

{

dvar_vector z=y(t)+Binv*Gamma*x(t);

f+=z*z;

}

break;

}

default:

{

f+= -0.5*T*log(square(det(B)))

+0.5*T*ln_det(D,sgn);

dvar_matrix Dinv=inv(D);

dvariable f1=0.0;

for (int t=1;t<=T;t++)

{

dvar_vector z=B*y(t)+Gamma*x(t);

f1+=z*(Dinv*z);

}

f+=0.5*f1;

if (!last_phase())

{

f+=0.1*norm2(Bpar);

f+=0.1*norm2(Gpar);

f+=0.1*norm2(ch_Dpar);

}

else
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{

f+=0.001*norm2(Bpar);

f+=0.001*norm2(Gpar);

f+=0.001*norm2(ch_Dpar);

}

}

}

f+=square(kx);

FUNCTION fill_B

B.initialize();

for (int i=1;i<=dimy;i++)

B(i,i)=1.0;

// this is part of the special structure of the model

int ii=1;

B(2,1)=Bpar(1);

B(3,1)=Bpar(2);

B(3,2)=Bpar(3);

B(4,2)=Bpar(4);

B(4,3)=Bpar(5);

B(5,3)=Bpar(6);

B(5,4)=Bpar(7);

B(1,4)=Bpar(8);

B(1,5)=Bpar(8);

B(2,5)=Bpar(9);

FUNCTION fill_Gamma

Gamma.initialize();

// this is the part of special structure of the model

Gamma(1,1)=Gpar(1);

Gamma(2,1)=Gpar(2);

Gamma(3,1)=Gpar(3);

Gamma(4,1)=Gpar(4);

Gamma(1,2)=Gpar(5);

Gamma(2,2)=Gpar(6);

Gamma(2,3)=Gpar(7);

FUNCTION fill_D

ch_D.initialize();

// this is the special structure of the model

int ii=1;

for (int i=1;i<=dimy;i++)

{

for (int j=1;j<=i;j++)

ch_D(i,j)=ch_Dpar(ii++);

5-8 AD Model Builder



ch_D(i,i)+=1;

}

D=ch_D*emp_D*trans(ch_D); // so Ch_D is the Cholesky

// decomposition of D

FUNCTION calculate_empirical_copvariance_matrix

for (int t=1;t<=T;t++)

z(t)=B*y(t)+Gamma*x(t);

emp_D=empirical_covariance(z);

FUNCTION calculate_constraints

double wt=1.0;

switch (current_phase())

{

case 1:

wt=1.0;

break;

case 2:

wt=10.0;

break;

case 3:

wt=100.0;

break;

default:

wt=1000.0;

break;

}

if (D(5,5)>1.0)

f+=wt*square(D(5,5)-1.00);

f+=wt*square(D(5,1));

f+=wt*square(D(5,2));

The REPORT SECTION prints out a report of the imodel’s results.

REPORT_SECTION

report << "B" << endl;

report << B << endl;

report << "Gamma" << endl;

report << Gamma << endl;

report << "D" << endl;

report << D << endl;

report << "eigenvalues of D" << endl;

report << eigenvalues(D) << endl;

report << "y" << endl;

report << y << endl;

report << "x" << endl;

report << x << endl;
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Chapter 6

The Kalman filter

The Kalman filter is a device for estimating parameters in a class of “time-series” like models
which are put into state-space form. We have used the notation from Harvey, chapter 3.
The general state space form is an multivariate time series

yt = Ztαt + dt + εt

where Zt is an N ×m matrix, dt is an N dimensional vector, yt is an N dimensional vector
and εt is a set of serially uncorrelated N dimensional random vectors with mean 0 and
correlation Ht. The elements of αt are not observable but are assumed to be generated by a
first order Markov process

αt = Ttαt−1 + ct +Rtηt

where Tt is an m×m matrix, ct is an m× 1 vector, Rt is an m× g matrix and ηt is a g × 1
vector of serially uncorrelated random vectors with mean 0 and covariance matrix Ht. The
specification of the state space system is completed by two further assumptions: 1. The

initial state vector α0 has a mean of a0 and a variance of P0. 2. The random vectors εt and

ηt are uncorrelated with each other and uncorrelated with the initial state.

In applications of the model many of the parameters Zt, dt, Ht, Tt, ct, Rt, and Qt may
be independent of t in which case we will write them without the subscript. Also R may be
the identity matrix in which case we will omit it.

As a simple example of such a model consider the (two dimensional) random walk
observed with error example considered below.

αt = αt−1 + ηt
yt = αt + εt

(6.1)

For this model the following parameters are fixed.

T =
(

1 0
0 1

)
Z =

(
1 0
0 1

)
R =

(
1 0
0 1

)
d = (0, 0) c = (0, 0)
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while the covariance matrices Q and H are estimated. Their true values used for simulating
the data were. The initial value of a is (0, 0).

Q =
(

1 0.8
0.8 1

)
H =

(
3 −2.5
−2.5 3

)

For a moment go back to the general state space model. Given a0, P0 we recursively calculate
the a number of quantities via the relationships

at|t−1 = Ttat−1 + ct
Pt|t−1 = TtPt−1T

′
t +RtQtR

′
t

vt = yt − Ztat|t−1 − dt
Ft = ZtPt|t−1Z

′
t +Ht

at = at|t−1 − Pt|t−1Z
′
tF
−1
t vt

Pt = Pt|t−1 − Pt|t−1Z
′
tF
−1
t ZtPt|t−1 (6.2)

The log likelihood function for the models parameters is given by

logL = −NT
2

log2π − 0.5
T∑
t=1

log|Ft| − 0.5
T∑
t=1

vtF
−1
t vt

The TPL file for the random walk kalman filter code follows

DATA_SECTION

init_int nt

init_int N

init_int m

int m1

init_matrix Y(1,nt,1,N)

matrix P0(1,m,1,m)

!! P0.initialize();

!! m1=m*(m+1)/2;

PARAMETER_SECTION

init_bounded_vector Qcoff(1,m1,-10.,10.1)

init_bounded_vector Hcoff(1,m1,-10.,10.1)

init_vector a0(1,m)

matrix T(1,m,1,m)

matrix TT(1,m,1,m)

vector d(1,N)

vector c(1,m)

matrix chQ(1,m,1,m)

sdreport_matrix Q(1,m,1,m)

matrix chH(1,N,1,N)

sdreport_matrix H(1,N,1,N)

matrix Z(1,N,1,m)

matrix TZ(1,m,1,N)

objective_function_value f

LOCAL_CALCS

d.initialize();
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c.initialize();

Z.initialize();

Z(1,1)=1; Z(2,2)=1;

T.initialize();

T(1,1)=1; T(2,2)=1;

TZ=trans(Z);

TT=trans(T);

PROCEDURE_SECTION

setup_Q();

setup_H();

f+=kalman_filter();

cout << " f = " << f << endl;

FUNCTION setup_Q

chQ.initialize();

int ii=1;

for (int i=1;i<=m;i++)

for (int j=1;j<=i;j++)

chQ(i,j)=Qcoff(ii++);

Q=chQ*trans(chQ);

FUNCTION setup_H

chH.initialize();

int ii=1;

for (int i=1;i<=N;i++)

for (int j=1;j<=i;j++)

chH(i,j)=Hcoff(ii++);

H=chH*trans(chH);

FUNCTION dvariable kalman_filter(void)

dvar3_array P(0,nt,1,m,1,m);

dvar3_array P1(1,nt,1,m,1,m);

dvar3_array F(1,nt,1,N,1,N);

dvar3_array Finv(1,nt,1,N,1,N);

dvar_matrix Ptemp(1,m,1,m);

dvar_matrix a(0,nt,1,m);

dvar_matrix a1(1,nt,1,m);

dvar_matrix v(1,nt,1,N);

a(0)=a0;

P(0)=P0;

// This is the Kalman filter recursion. The objects tmp1

// and tmp2 hold common calculations to optimize a bit

int t;

for (t=1;t<=nt;t++)

{

a1(t)=T*a(t-1)+c;

P1(t)=T*P(t-1)*TT+Q;

dvar_vector pred_y=Z*a1(t)+d;

v(t)=Y(t)-pred_y;

dvar_matrix tmp1=P1(t)*TZ;

F(t)=Z*tmp1+H;

Finv(t)=inv(F(t));

dvar_matrix tmp2= tmp1*Finv(t);

P(t)=P1(t)-tmp2*Z*P1(t);

a(t)=a1(t)+tmp2*v(t);

}

int sgn=0;

dvariable f=0.0;

for (t=1;t<=nt;t++)
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f+=ln_det(F(t),sgn)+v(t)*Finv(t)*v(t);

return f;

TOP_OF_MAIN_SECTION

arrmblsize=20000000;

gradient_structure::set_CMPDIF_BUFFER_SIZE(3000000);

gradient_structure::set_GRADSTACK_BUFFER_SIZE(1000000);

This example was deliberatley not optimized as much as it could be in order to retain
the flavour of the more general state space problem. For example since T is the identity
matrix and c is the zero vector the line of code

a1(t)=T*a(t-1)+c;

reduces to

a1(t)=a(t-1);

The parameters being estimated are a0, Q, and H.

To parameterize the covariance matrices the Choleski decomposition parameterization
was used. This ensures that the covariance matrices are positive (semi) definite. The tech-
nique can be seen in the function setup Q. The lower triangular matrix ch Q is filled with
parameters from a bounded vector

FUNCTION setup_Q

chQ.initialize();

int ii=1;

for (int i=1;i<=m;i++)

for (int j=1;j<=i;j++)

chQ(i,j)=Qcoff(ii++);

Q=chQ*trans(chQ); // chQ is the choleski decomposition of Q

Notice that the bounded vector Qcoff has slightly asymmetric bounds. This is a sim-
ple way to ensure that its initial value is not identically 0 which would lead to a singular
covariance matrix.

init_bounded_vector Qcoff(1,m1,-10.,10.1)

The model parameters, standard deviations and corellations are reproduced from the
standadard ADMB report.

index name value std dev 7 8 9 10 11 12 13 14 15 16

7 a0 -1.1682e+00 9.0191e-01 1.000

8 a0 1.2218e+00 8.6442e-01 0.352 1.000

9 Q 9.9468e-01 1.0862e-01 0.059 -0.006 1.000

10 Q 7.8808e-01 7.8737e-02 0.038 0.028 0.683 1.000

11 Q 7.8808e-01 7.8737e-02 0.038 0.028 0.683 1.000 1.000

12 Q 8.7279e-01 9.6118e-02 -0.018 0.069 0.185 0.721 0.721 1.000

13 H 3.1352e+00 1.8123e-01 -0.015 -0.007 -0.305 -0.136 -0.136 -0.018 1.000

14 H -2.7119e+00 1.4922e-01 -0.021 0.001 -0.102 -0.238 -0.238 -0.139 -0.692 1.000

15 H -2.7119e+00 1.4922e-01 -0.021 0.001 -0.102 -0.238 -0.238 -0.139 -0.692 1.000 1.000

16 H 3.2264e+00 1.7936e-01 0.015 -0.029 -0.031 -0.121 -0.121 -0.249 0.370 -0.698 -0.698 1.000
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The Choleski decomposition parameterization merely ensures that the matrix is positive
semi-definite. By adding a small positive number to the diagonal elements one can ensure
that the covariance matrix is positive definite and can speed up and improve the stability
of the estimation. Of course what is meant by small will depend on the particular problem
being considered. A modifed form of the routine setup Q follows.

FUNCTION setup_Q

int i;

chQ.initialize();

int ii=1;

for (i=1;i<=m;i++)

for (int j=1;j<=i;j++)

chQ(i,j)=Qcoff(ii++);

Q=chQ*trans(chQ); // chQ is the choleski decomposition of Q

for (i=1;i<=m;i++)

Q(i,i)+=0.1; // make Q positive definite

Performing this modification for the present model for both Q and H causes the program
to converge about twice as fast.
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Chapter 7

Applying the Laplace approximation
to the Generalized Kalman Filter –
with an application to Stochastic
Volatility Models

Let yi be an N dimensional multivariate time series for i = 1, . . . , n where yi is a random
vector with probability density function p(yi|αi). For each i, the αi are random vectors which
satisfy the condition

αi = Ti(αi−1, yi−1) + ηi (7.1)

where µηi = 0 and σ2
ηi

= σ2
η.

Let p(α1) be the probability density function for α1 before y1 is oberved. After observing
y1 we want to calculate the probability distribution of α1 given y1. This is given by

p(α1|y1) = p(y1|α1)p(α1)/p(y1) (7.2)

where

p(y1) =
∫∞
−∞ p(y1|α1)p(α1) dα1 (7.3)

let φ(y1, α1) = log(p(y1|α1)p(α1)) Let α̂1(y1) = maxα1{φ(y1, α1)}. Approximate φ by
its second order taylor expansion in α1 at α̂1.

φ(y1, α1) ≈ φ(y1, α̂1) +D2
α1α1

φ(y1, α̂1(y1))(α1 − α̂1(y), α1 − α̂1(y)) (7.4)

so that

p(y) ≈ eφ(y1,α̂1(y1))
∫∞
−∞ exp

{
− (−D2

α1α1
φ(y1, α̂1(y1))(α1 − α̂1(y), α1 − α̂1(y)))

}
dα1 (7.5)
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Making a change of variables and integrating we obtain

p(y1) ≈ eφ(y1,α̂1(y1))(2π)n/2| −D2
α1α1

φ(y1, α̂1(y1)))|−1/2 (7.6)

This is the Laplace approximation to the integral in (7.3).

If the distribution of α1 is (multivariate) normal and the distribution of y1|α1 is multi-
variate normal then φ(y1, α1) is a quadratic function of α1 so that the Laplace approximation
is exact. The advantage of the Laplace approximation is that it can be employed for non
normal distributions.

To illustrate this advantage consider the simple one dimensional case where α1 has a
(univiariate) normal distribution with mean 0 and variance σ2

α. Assume that the distribution
of y1|α1 is a fat-tailed distribution which is a mixture of 0.95 normal distribution and 0.05
cauchy distribution. Then

φ(y1, α1) = log
[
0.95 exp(−0.5(y1−α1)2/σ2

y)+0.05
√

2/π/(1+(y−α1)2/σ2
y)
]
−0.5α2

1/σ
2
α+const(7.7)

whereas if y1 is assumed to have a normal distribution

φ(y1, α1) = −0.5(y1 − α1)2/σ2
y − 0.5α2

1/σ
2
α + const (7.8)

where const denotes some constant independent of α1. There are two drawbacks to the use
of 5.b If the value of y1 is an outlier from the point of the normal model then it will have too
much influence on the mode of the estimate of p(α1|y1). Also since the variance

σ2
α1|y1

= D2
α1α1

φ(y1, βi)}−1 =
[
1/σ2

y + 1/σ2
α

]−1
(7.9)

the variance is independent of the value of y1 observed and σ2
α1|y1

will be underestimated.

This is incorrect behaviour since if y1 is an outlier it contains (almost) no information about
the value of p(α1|y1) so that p(α1|y1) should be almost equal to p(α1). The likelihood function
based on 5a has the desired behaviour.

To calculate (7.6) it is necessary to maximize φ(y1, α1) with respect to α1 and to calculate
its hessian matrix with respect to α1.

For the maximization we employ the Newton-Raphson algorithm. Let β0 = µα1

βi+1 = βi − {D2
α1α1

φ(y1, βi)}−1(Dα1φ(y1, βi)) (7.10)

This operation is carried out a fixed number r times and then α̂1(y1) ≈ βr. For “well
behaved” problems the sequence βi converges quadratically to α̂1(y1). We approximate
p(α1|y1) by a multivariate normal with

µα1|y1 = βr

σ2
α1|y1

= { −D2
α1α1

φ(y1, βr)}−1
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and approximate p(α2|y1) by a multivariate normal with

µα2|y1 = T (βr, y1)

σ2
α2|y1

= Dα1T1(βr, y1)σ2
α1|y1

Dα1T1(βr, y1)′ + σ2
η

Now

p(y2|y1) =
∫∞
−∞ p(y2|α2)p(α2|y1) dα2 (7.11)

As above we maximize the integrand of (7.11) with respect to α2 and use the Laplace approx-
imation to the integral. This produces the sequence of conditional probabilities, p(yi|yi−1).
The log-likelihood function for the observed sequence yi is given by∑n

i=1 log(p(yi|yi−1)) (7.12)

Although we have not explicitly shown them the conditional likelihood functions p(yi|yi−1)
depend on a number of parameters. These parameters include the specification of T , other
parameters in the probability density p(yi|αi) and parameters which determine σ2

η. If we

denote these parameters by θ and write (p(yi|yi−1, θ)) to indicate this dependence the log-
likelihood function becomes ∑n

i=1 log(p(yi|yi−1, θ)) (7.13)

the maximum likelihood estimates for the parameter vector θ are found by maximizing (7.13)
with respect to θ.

The version of the stochastic volatility model presented here is from the paper Multivari-
ate Stochastic Volatility Models: Estimation and a comparison with VGARCH Models by
Danielsson.

It is assumed that yi has a multivariate normal distribution with µyi = 0 and covariance
matrix Ωi(αi) = Hi(αi)RHi(αi) where Hi(αi) is an m×m diagonal matrix whose j’th element
on the diagonal is given by exp(αij)/2 where the αij satisfy the relationship

αi = w + elem prod(δ, αi−1) + elem prod(λ1, yi−1) + elem prod(λ2, |yi−1|) + ηi (7.14)

where ηi is a multivariate normal random variable with µηi = 0 and σ2
ηi

= σ2
η. If u and

v are two vectors with j’th component uj and vj elem prod(i, v) is the vector with j’th
componment ujvj. R is an m × m postive definite matrix satisfying rjj = 1, that is a
corellation matrix. Then

log(p(yi|αi)) = −0.5 log|Ωi(αi)| − 0.5y′iΩi(αi)
−1yi (7.15)
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and the distribution of αi|yi−1 is multivariate normal with mean vector and covariance matrix
given by

µαi|yi−1
= w + elem prod(δ, µαi−1|yi−1

) + elem prod(λ, yi−1)

σ2
αi|yi−1

= i diag(δ)σ2
αi−1|yi−1

diag(δ) + σ2
η (7.16)

diag(δ) is the diagonal matrix whose diagonal is equal to the vector δ.

log(p(yi|αi)p(αi|yi−1)) = −0.5 log|Ωi(αi)| − 0.5y′iΩi(αi)
−1yi − 0.5 log|σ2

αi|yi−1
|

−0.5(αi − µαi|yi−1
)′(σ2

αi|yi−1
)−1(αi − µαi|yi−1

) (7.17)

To perform the Newton-Raphson calculations it is necessary to calculate the first and second
derivatives of expression (7.17) with respect to the parameter vector α. This is the most
involved part of the calculations and will depend on the particular form of the model. In the
present case the calculations are simplified by the fact that Ωi only depends on α through
the diagonal matrix H(αi).

The probability density function p(α1) is assumed to be multivariate normal with µα1 =
θ0 and σ2

α1
= 0.

The data consist of the daily Mark/Dollar and Yen/dollar exchange rates and the US and
Japaneese stock index data. There are 1301 time periods with some missing data. The
missing data which are denoted by the impossibly large value of 10,000 were replaced with
the average from the period before and after. They can howerever easily be estimated in the
model is desired.

The model was fit with various combinations of the parameters and the log-likelihood was
examined to investigate the improvement in fit due to the addition of the parameters.

Parameters in model number of parameters log-likelihood

w, δ, R, σ2
η 24 3774.7

w, δ, R, σ2
η, λ1 28 3806.6

w, δ, R, σ2
η, λ1, θ0 32 3808.6

w, δ, R, σ2
η, λ1, θ0, λ2 36 3811.2

The parameters θ0 and λ2 did not produce a significant improvement to the fit. λ2

measures the asymmetry in the response of the variance to positive and negative shocks.
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Here are the parameter estimates and their standard deviations for the model with
w, δ, R, σ2

η, and λ1.

index name value std dev

1 w(1) -1.3749e-001 4.9434e-002

2 w(2) -6.5649e-001 1.6161e-001

3 w(3) 3.1693e-002 1.0574e-002

4 w(4) -1.2973e-002 1.5375e-002

5 lambda1(1) 1.5564e-001 4.9688e-002

6 lambda1(2) 1.8647e-001 6.9525e-002

7 lambda1(3) -6.9265e-002 1.4158e-002

8 lambda1(4) -1.6689e-001 3.1626e-002

9 delta(1) 8.2229e-001 4.6074e-002

10 delta(1) 5.0848e-001 1.0785e-001

11 delta(1) 9.5763e-001 1.4602e-002

12 delta(1) 9.3610e-001 1.8812e-002

29 R(1,1) 1.0000e+000 0.0000e+000

30 R(1,2) 5.3821e-001 2.2883e-002

31 R(1,3) -7.1704e-002 2.9477e-002

32 R(1,4) -3.8796e-002 2.9278e-002

33 R(2,1) 5.3821e-001 2.2883e-002

34 R(2,2) 1.0000e+000 0.0000e+000

35 R(2,3) -1.2932e-001 2.9111e-002

36 R(2,3) -4.1466e-002 2.9468e-002

37 R(3,1) -7.1704e-002 2.9477e-002

38 R(3,2) -1.2932e-001 2.9111e-002

39 R(3,3) 1.0000e+000 0.0000e+000

40 R(1,4) 8.8811e-002 2.9085e-002

41 R(4,1) -3.8796e-002 2.9278e-002

42 R(4,2) -4.1466e-002 2.9468e-002

43 R(4,3) 8.8811e-002 2.9085e-002

44 R(4,4) 1.0000e+000 0.0000e+000

45 Omega(1,1) 6.5973e-001 6.3099e-002

46 Omega(1,2) 1.9827e-001 1.6129e-002

47 Omega(1,3) -1.3395e-001 5.4982e-002

48 Omega(1,4) -3.5161e-002 2.6676e-002

49 Omega(2,1) 1.9827e-001 1.6129e-002

50 Omega(2,2) 2.0570e-001 2.3994e-002

51 Omega(2,3) -1.3489e-001 3.2608e-002

52 Omega(2,4) -2.0985e-002 1.5016e-002

53 Omega(3,1) -1.3395e-001 5.4982e-002

54 Omega(3,2) -1.3489e-001 3.2608e-002

55 Omega(3,3) 5.2895e+000 5.7872e-001

56 Omega(3,4) 2.2791e-001 7.9318e-002

57 Omega(4,1) -3.5161e-002 2.6676e-002

58 Omega(4,2) -2.0985e-002 1.5016e-002

59 Omega(4,3) 2.2791e-001 7.9318e-002

60 Omega(4,4) 1.2451e+000 1.7043e-001

61 Z(1,1) 2.3967e-001 7.4268e-002

62 Z(1,2) 2.0711e-001 5.5599e-002

63 Z(1,3) 3.8832e-002 1.8505e-002

64 Z(1,4) 2.4097e-002 2.0344e-002

65 Z(2,1) 2.0711e-001 5.5599e-002

66 Z(2,2) 4.6309e-001 1.1143e-001

67 Z(2,3) 3.4298e-002 2.3017e-002

68 Z(2,4) 9.6831e-003 2.9999e-002

69 Z(3,1) 3.8832e-002 1.8505e-002

70 Z(3,2) 3.4298e-002 2.3017e-002
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71 Z(3,3) 3.9101e-002 1.6885e-002

72 Z(3,4) 2.4602e-002 1.1053e-002

73 Z(4,1) 2.4097e-002 2.0344e-002

74 Z(4,2) 9.6831e-003 2.9999e-002

75 Z(4,3) 2.4602e-002 1.1053e-002

76 Z(4,4) 9.6109e-002 3.4268e-002

The AD Model Builder TPL file for the model is given below.

DATA_SECTION

init_int ndim

init_int nobs

int ndim1

int ndim2

!! ndim1=ndim*(ndim+1)/2;

!! ndim2=ndim*(ndim-1)/2;

init_matrix Y(1,nobs,1,ndim)

LOC_CALCS

// replace missing values (10000) with the average of before and after.

for (int i=2;i<nobs;i++)

for (int j=1;j<=ndim;j++)

if (Y(i,j)==10000)

{

int i2=i+1;

do

{

if (Y(i2,j)==10000)

i2++;

else

break;

}

while(1);

Y(i,j)=(Y(i-1,j)+Y(i2,j))/2.;

if (Y(i,j)>100.0) // did this work

cerr << " Y(i,j) too big " << Y(i,j) << endl;

}

END_CALCS

PARAMETER_SECTION

matrix h_mean(1,nobs,1,ndim)

3darray h_var(1,nobs,1,ndim,1,ndim)

number ldR;

init_vector theta0(1,ndim,3);

vector lmin(1,nobs)

init_bounded_vector w(1,ndim,-10,10)

vector w1(1,ndim)

init_vector lambda(1,ndim,2)

init_vector lambda2(1,ndim,-1)

init_bounded_vector delta(1,ndim,0,.98)

sdreport_matrix R(1,ndim,1,ndim)

sdreport_matrix Omega(1,ndim,1,ndim)

matrix ch_R(1,ndim,1,ndim)

matrix Rinv(1,ndim,1,ndim)

init_bounded_vector v_R(1,ndim2,-1.0,1.0)

sdreport_matrix Z(1,ndim,1,ndim)

matrix ch_Z(1,ndim,1,ndim)

init_bounded_vector v_Z(1,ndim1,-1.0,1.0)

matrix S(1,ndim,1,ndim);

objective_function_value f
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INITIALIZATION_SECTION

delta 0.9

PROCEDURE_SECTION

fill_the_matrices();

int sgn;

ldR=ln_det(R,sgn);

Rinv=inv(R);

dvar_vector tmp(1,ndim);

dvar_matrix sh(1,ndim,1,ndim);

h_mean(1)=theta0;

h_var(1)=0;

for (int i=2;i<=nobs;i++)

{

dvar_vector tmean=update_the_means(w,h_mean(i-1),Y(i-1));

dvar_matrix v=update_the_variances(h_var(i-1));

tmp=tmean;

dvar_vector h(1,ndim);

dvar_vector gr(1,ndim);

for (int ii=1;ii<=4;ii++) // do the Newton-Raphson 4 times

{

xfp12(tmp, Y(i),tmean,v,gr,sh); // get 1st and 2nd derivatives

h=-solve(sh,gr); //sh is hessian and gr is the gradient

tmp+=h; // add new step h

}

double nh=norm2(value(h)); // check size of h for convergence

if (nh>1.e-1)

cout << "No convergence in NR " << nh << endl;

if (nh>1.e+02)

{

f+=1.e+7; // this ensures that the function minimizer will take a

return; // smaller step

}

h_mean(i)=tmp;

h_var(i)=inv(sh);

lmin(i)=fp(tmp,Y(i),tmean,v);

int sgn;

f+=lmin(i)+0.5*ln_det(sh,sgn); // Laplace approximation

}

f-=0.5*nobs*ndim*log(2.*3.14159);

Omega=S;

FUNCTION dvar_vector update_the_means(dvar_vector& w,dvar_vector& m,dvector& e)

dvar_vector tmp= w+elem_prod(delta,m)+elem_prod(lambda,e);

if (active(lambda2))

tmp+=elem_prod(lambda2,fabs(e));

return tmp;

FUNCTION dvar_matrix update_the_variances(dvar_matrix& v)

dvar_matrix tmp(1,ndim,1,ndim);

for (int i=1;i<=ndim;i++)

{

for (int j=1;j<=i;j++)

{

tmp(i,j)=delta(i)*delta(j)*v(i,j);

if (i!=j) tmp(j,i)=tmp(i,j);

}

}
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tmp+=Z;

return tmp;

FUNCTION dvariable fp(dvar_vector& h, dvector& y, dvar_vector& m,dvar_matrix& v)

dvar_vector eh=exp(.5*h);

for (int i=1;i<=ndim;i++)

{

for (int j=1;j<=i;j++)

{

S(i,j)= eh(i)*eh(j)*R(i,j);

if (i!=j) S(j,i)=S(i,j);

}

}

dvariable lndet;

dvariable sgn;

dvar_vector u=solve(S,y,lndet,sgn);

dvariable l;

l=.5*lndet+.5*(y*u);

dvar_vector hm=h-m;

w1=solve(v,hm,lndet,sgn);

l+=.5*lndet+.5*(w1*hm);

return l;

FUNCTION void xfp12(dvar_vector& h, dvector& y,dvar_vector& m,dvar_matrix& v, dvar_vector

gr,dvar_matrix& hess)

dvar_vector ehinv=exp(-.5*h);

dvariable lndet;

dvariable sgn;

dvar_vector ys=elem_prod(ehinv,y);

dvar_vector u=Rinv*ys;

gr=0.5;

dvar_vector vv=elem_prod(ys,u);

gr-=.5*vv;

dvar_vector hm=h-m;

dvar_vector w=solve(v,hm,lndet,sgn);

gr+=w;

for (int i=1;i<=ndim;i++)

{

for (int j=1;j<=i;j++)

{

hess(i,j)=0.25*ys(i)*ys(j)*Rinv(i,j);

if (i!=j) hess(j,i)=hess(i,j);

}

}

for (i=1;i<=ndim;i++)

{

hess(i,i)+=.25*vv(i);

}

hess+=inv(v);

FUNCTION fill_the_matrices

int ii=1;

ch_Z.initialize();

for (int i=1;i<=ndim;i++)

{

for (int j=1;j<=i;j++)

ch_Z(i,j)=v_Z(ii++);

7-8 AD Model Builder



ch_Z(i,i)+=0.5;

}

Z=ch_Z*trans(ch_Z);

ch_R.initialize();

ii=1;

for (i=1;i<=ndim;i++)

{

for (int j=1;j<i;j++)

ch_R(i,j)=v_R(ii++);

ch_R(i,i)+=0.1;

ch_R(i)/=norm(ch_R(i));

}

R=ch_R*trans(ch_R);

REPORT_SECTION

report<<"observed"<<Y<<endl;

for (int i=1;i<=nobs;i++)

{

report<< "mean" <<endl;

report<< h_mean(i) <<endl;

report<< "covariance" <<endl;

report<<h_var(i)<<endl;

report<<endl;

}

report<< "S(nobs) " << endl;

report<< Omega << endl;

report<< "Z " << endl;

report<< Z << endl;

report<< "R " << endl;

report<< R << endl;

TOP_OF_MAIN_SECTION

arrmblsize=20000000;

gradient_structure::set_CMPDIF_BUFFER_SIZE(25000000);

gradient_structure::set_GRADSTACK_BUFFER_SIZE(1000000);
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Chapter 8

All the functions in AD Model
Builder

This chapter attempts to list and document all the functions available in AD Model Builder.
It will always be incomplete since functions are continually being added. If you are aware of
a function which is not documented please contact me at otter@otter-rsch.com and let me
know.

Whereever applicable the name function has been supplied for constand and variable objects
(such as double and dvariable). Instead of repeating the description for bioth kinds of
objects the convention of referring to both types as “number”, “vector”, “matrix”, etc. with
be observed.

The following functions have been included in AUTODIF by overloading the C++ library
functions

sin cos tan asin atan acos sinh cosh tanh fabs (sfabs) exp log log10 sqrt pow

gammln log_comb

These functions can be used on numbers or vector objects in the form

number = function(number);

vector_object = function(vector_object);

When operating on vector objects the functions operate element by element, so that if y
is a dvector whose elements are (y1, . . . , yn) then exp(y) is a dvector whose elements are
( exp(y1), . . . , exp(yn)).

The functions min and max when applied to a vector object return a number which is
equal to the minimum or maximum element of the vector object

The function gammln is the logarithm, of the gamma function.
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The function log comb(n,k) is the logarithm, of the function the combination of n

things taken k at a time. It is defined via the logarithm of the gamma function for non-
integer values and is differentiable.

There are several operations familiar to users of spreadsheets which do not appear as often
in classical mathematical calculations. For example spreadsheet users often wish to multiply
one column in a spreadsheet by the corresponding elements of another column. Spread sheet
users might find it much more natural to define the product of matrices as an element-wise
operation such as

zij = xij ∗ yij
The “classical” mathematical definition for the matrix product has been assigned to the
overloaded operator “*” so that large mathematical formulas involving vector and matrix
operations can be written in a concise notation. Typically, spreadsheet-type calculations are
not so complicated and do not suffer so much from being forced to adopt a “function-style”
of notation.

Since addition and subtraction are already defined in an element-wise manner, it is only
necessary to define element-wise operations for multiplication and division. We have name
these functions elem prod and elem div.

vector_object = elem_prod(vector_object,vector_object) // element-wise multiply

zi = xi ∗ yi

vector_object = elem_div(vector_object,vector_object) // element-wise divide

zi = xi/yi

matrix_object = elem_prod(matrix_object,matrix_object) // element-wise multiply

zij = xij ∗ yij

matrix_object = elem_div(matrix_object,matrix_object) // element-wise divide

zij = xij/yij

matrix_object = identity_matrix(int min,int max)

Creates a square identity matrix with minimum valid indices min and maximum valid index
max.
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The determinant of a matrix object (The matrix must be square, that is the number of row
must equal the number of columns)

matrix_object = det(matrix_object)

The inverse of a matrix object (The matrix must be square, that is the number of row must
equal the number of columns)

matrix_object = inv(matrix_object)

The norm of a vector object

number = norm(vector_object)

z =
√∑

i

x2
i

The norm squared of a vector object

number = norm2(vector_object)

z =
∑
i

x2
i

The norm of a matrix object

number = norm(matrix_object)

z =
√∑

ij

x2
ij

The norm squared of a matrix object

number = norm2(matrix_object)

zij = xji

The transpose of a matrix object

matrix_object = trans(matrix_object)

z =
∑
ij

x2
ij
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The sum over the elements of a vector object

number = sum(vector_object)

z =
∑
i

xi

The row sums of a matrix object

vector = rowsum(matrix_object)

zi =
∑
j

xij

The column sums of a matrix object

vector = colsum(matrix_object)

zj =
∑
i

xij

The minimum element of a vector object

number = min(vector_object)

The maximum element of a vector object

number = max(vector_object)

While we have included eigenvalue and eigenvector routines for both constant and variable
matrix objects you should be aware that in general the eigenvectors and eigenvalues are not
differentiable functions of the variables determining the matrix.

The eigenvalues of a symmetric matrix

vector_object = eigenvalues(matrix_object)

are returned in a vector. It is the users responsibility to ensure that the matrix is actually
symmetric. The routine symmetrizes the matrix so that the eigenvalues returned are actually
those for the symmetrized matrix.

The eigenvectors of a symmetric matrix

matrix_object = eigenvectors(matrix_object)

are returned in a matrix. It is the users responsibility to ensure that the matrix is actually
symmetric. The routine symmetrizes the matrix so that the eigenvectors returned are actu-
ally those for the symmetrized matrix. The eigenvectors are located in the columns of the
matrix. The i’th eigenvalue returned by the function eigenvalues corresponds to the i’th
eigenvector returned by the function eigenvector.
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For a positive definite symmetric matrix S, the choleski decomposition of S ia a lower triangu-
lar matrix T satifying the relationship S=T*trans(T). If S is a (positive definite symmetric)
matrix object and T is a matrix object, the line of code

T=choleski_decomp(S);

will calculate the choleski decomposition of S and put it into T.

If y is a vector and M is an invertible matrix then finding a vector x such that

x=inv(M)*y

will be referred to as solving the system of linear equations determined by y and M. Of course
it is possible to use the inv function to accomplish this task but it is much more efficient to
use the solve function.

vector x=solve(M,y); // x will satisfy x=inv(M)*y;

It turns out that it is a simple matter to calculate the determinant of the matrix M at the
same time as the system of linear equations is solved, and since this is useful in multivariate
analysis we have also included a function which returns the determinant at the same time
as the system of equations is solved. To avoid floating point overflow or underflow when
working with large matrices the logarithm of the absolute value of the determinant together
with the sign of the determinant are returned The constant form of the solve function is

double ln_det;

double sign;

dvector x=solve(M,y,ln_det,sign);

while the variable form is

dvariable ln_det;

dvariable sign;

dvar_vector x=solve(M,y,ln_det,sign);

The solve function is useful for calculating the log-likelihood function for a multivariate
normal distribution. Such a log-likelihood function involves a calculation similar to

l = -.5*log(det(S)) -.5*y*inv(S)*y

where Sis a matrix object and y is a vector object. It is much more efficient to carry out
this calculation using the solve function. The following code illustrates the calculations for
variable objects.

dvariable ln_det;

dvariable sign;

dvariable l;

dvar_vector tmp=solve(M,y,ln_det,sign);

l=-.5*ln_det-y*tmp;
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While it is always possible to fill vectors and matrices by using loops and filling them element
by element, this is tedious and prone to error. To simplify this task a selection of methods
for filling vectors and matrices with random numbers or a specified sequence of numbers is
available. There are also methods for filling row and columns of matrices with vectors. In
this section the symbol vector can refer to either a dvector or a dvar vector. while the
symbol matrix can refer to either a dmatrix or a dvar matrix.

void vector::fill("{m,n,...,}")

fills a vector with a sequence of the form n, m, . . . The number of elements in the string
must match the size of the vector.

void vector::fill_seqadd(double& base, double& offset)

fills a vector with a sequence of the form base, base+offset, base+2*offset,. . .

For example if v is a dvector created by the statement

dvector v(0,4);

then the statement

v.fill_seqadd(-1,.5);

will fill v with the numbers (−1.0,−0.5, 0.0, 0.5, 1.0).

void matrix::rowfill_seqadd(int& i,double& base, double& offset)

fills row i of a matrix with a sequence of the form base, base+offset, base+2*offset,. . .

void matrix::colfill_seqadd(int& j,double& base, double& offset)

fills column j of a matrix with a sequence of the form base, base+offset,

base+2*offset,. . .

void matrix::colfill(int& j,vector&)

fills the j’th column of a matrix with a vector

void matrix::rowfill(int& i,vector&)

fills the i’th row of a matrix with a vector

This mehtiod of filling containers with random numbers is becoming obsolete. the preferred
method is to use the random number generator class. See section 8.15 for instructions on
using this class. In this section a uniformly distributed random number is assumed to have
a uniform distribution on [0, 1]. A normally distributed random number is assumed to have
mean 0 and variance 1. A binomially distributed random number is assumed to have a
parameter p where 1 is returned with probability p and 0 is returned with probability 1− p.
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A multinomially distributed random variable is assumed to have a vector of parameters P
where i is returned with probability pi. If the components of P do not sum to 1 the vector
will be normalized so that the components do sum to 1.

void vector::fill_randu(long int& n)

fills a vector with a sequence of uniformly distributed random numbers. The long int n is a
seed for the random number generator. Changing n will produce a different sequence of ran-
dom numbers. This function is now obsolete. You should use the random number generator

class to generate random numbers.

void matrix::colfill_randu(int& j,long int& n)

fills column j of a matrix with a sequence of uniformly distributed random numbers The
long int n is a seed for the random number generator. Changing n will produce a different
sequence of random numbers.

void matrix::rowfill_randu(int& i,long int& n)

fills row i of a matrix with a sequence of uniformly distributed random numbers

void vector::fill_randbi(long int& n, double& p)

fills a vector with a sequence random numbers from a binomial distribution.

void vector::fill_randn(long int& n)

fills a vector with a sequence of normally distributed random numbers This function is now
obsolete. You should use the random number generator class to generato random numbers.

void matrix::colfill_randn(int& j,long int& n)

fills column j of a matrix with a sequence of normally distributed random numbers

void matrix::rowfill_randn(int& i,long int& n)

fills row i of a matrix with a sequence of normally distributed random numbers

void vector::fill_multinomial(long int& n, dvector& p)

fills a vector with a sequence random numbers from a multinomial distribution. The param-
eter p is a dvector such that p[i] is the probability of returning i. The elements of p must
sum to 1.

When this code was first written the maximum dimnsion of arrays was about 4. At this level
it perhaps make sense to think of a one dimensional array as a vector, a two dimensional
array as a matrix etc. For a matrix one thinks in terms of rows and columns. However with
the adoption of ragged container objects up to eight dimensions (at present) a more generic
method of obtaining shape information of these objects was called for.
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If v is a vector object then

int v.indexmin()

int v.indexmax()

return the minimum and maximum valid indices for v. If m is a matrix object then

int v.rowmin()

int v.rowmax()

int v.colmin()

int v.colmax()

return the minimum and maximum valid row and column indices for m. These functions
make sense for a matrix where every row is a vector with the same minimum and maximum
valid indices. For a ragged matrix this is no longer the case so that the rowmin and rowmax()

functions don’t make sense in this case. To deal with a ragged matrix one may need to
calculate the minimum and maximum valid indices for each row of the ragged matrix. To
facilitate this approach the functions indexmin and indexmax have been defined for all
container classes so that for example if w is a six dimensional array then

int w.indexmin()

int w.indexmax()

return the minimum and maximum valid indices for the first index of w. For
a matrix object m m.indexmin() and m.colmin() are the same and as long as m

is not ragged then m(m.indexmin()).indexmin() is the same as m.colmin() and
m(m.indexmin()).indexmax() is the same as m.colmax().

vector column(matrix& M,int& j)

extracts the j’th column from a matrix and puts it into a vector

vector extract_row(matrix& M,int& i)

extracts a row from a matrix and puts it into a vector. Note that the operation M(i) has
the same effect.

vector extract_diagonal(matrix& M)

extracts the diagonal elements from a matrix and puts them into a vector.

The function call operator ( ) has been overloaded inv two ways to provide for the
extraction of a subvector.

vector(ivector&)

An ivector object is used to specify the elements of the vector to be chosen. If u and v are
dvectors and i is an ivector the construction

dvector u = v(i);
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will extract the members of v indexed by i and put them in the dvector u. The size of u is
equal to the size of i. The dvector u will have minimum valid index and maximum valid
index equal to the minimum valid index and maximum valid index of i. The size of i can be
larger than the size of v in which case some elements of v must be repeated. The elements
of the ivector i must lie in the valid index range for v.

If v is a dvector and i1 and i2 are two integers

u(i1,i2)

is a dvector which is a subvector of v (provided of course that i1 and i2 are valid indices
for v). Subvectors can appear on both the left and right hand side of an assignment.

dvector u(1,20);

dvector v(1,19);

v = 2.0; // assigns the value 2 to all elements of v

u(1,19) = v; // assigns the value 2 to elements 1 through 19 of u

In the above example suppose that we wanted to assign the vector v to elements 2
through 20 of the vector u. To do this we must first ensure that they have the same valid
index ranges. The operators ++ and -- increment and decrement the index ranges by 1. The
code fragment

dvector u(1,20);

dvector w(1,19);

dvector v(1,19);

v = 2.0; // assigns the value 2 to all elements of v

--u(2,20) = v; // assigns the value 2 to elements 2 through 20 of u

u(2,20) = ++v; // assigns the value 2 to elements 2 through 20 of u

// probably not what you want

w=v; // error different index ranges

It is important to realize that from the point of view of the vector u both of the above
assigments have the same effect. It will have elements 2 through 20 set equal to 2. The
difference is in the side effects on the vector v. The operation ++v will increase the minimum
and maximum valid index range of the vector v by one. This increase is permanent. On
the other hand the operation --u(2,20) decrements the valid index bounds of the subvector
u(2,20). This is a distinct object from the vector u although both objects share a common
area for their components. Thus the valid index bounds of u are not effected by this process.
The use of subvectors and increment and decrement operations can be used to remove loops
from the code. Note that

dvector x(1,n)

dvector y(1,n)

dvector z(1,n)

for (int i=2;i<=n;i++)

{

x(i)=y(i-1)*z(i-1);

}
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can be written as

dvector x(1,n)

dvector y(1,n)

dvector z(1,n)

x(2,n)=++elem_prod(y(1,n-1),z(1,n-1)); // elem_prod is element-wise

// multiplication of vectors

Ths shift function can be sued to set the minimum (and maximum) valid index for a
vector.

dvector u(10,100); // minimum valid index is 10

// maximum valid index is 100

u.shift(25); // minimum valid index is 25

// maximum valid index is 115

In particular the operators -- and ++ are just convenient shorthand for using the shift

function to chnage the minimum valid index by 1.

dvector u(10,100); // minimum valid index is 10

// maximum valid index is 100

u.shift(u.indexmin()-1); // minimum valid index is 9

--u; // same result as u.shift(u.indexmin()-1)

u.shift(u.indexmin()+1); // minimum valid index is 11

++u; // same result as u.shift(u.indexmin()+1)

While sorting is not strictly a part of methods for calculating the derivatives of differen-
tiable functions (it is a highly non-differentiable operation) it is so useful for pre- and post-
processing data that we have included some functions for sorting dvector and dmatrix

objects. If v is a dvector the statement

dvector w=sort(v);

will sort the elements of v in ascending order and put them in the dvector object w. The
minimum and maximum valid indices of w will be the same as those of v. If desired an index
table for the sort can be constructed by passing and ivector along with the dvector. This
index tables can be used to sort other vectors in the same order as the original vector by
using the () operator.

dvector u={4,2,1};

dvector v={1,6,5}

ivector ind(1,3);

dvector w=sort(u,ind); // ind will contain an index table for the sort

// Now w=(1,2,4) and ind=(3,2,1)

dvector ww=v(ind); // This is the use of the ( ) operator for subset

// selection.

// Now ww=(5,6,1)

The sort function for a dmatrix object sort the columns of the dmatrix into ascending
order, using the column specified to do the sorting. For example

dmatrix MM = sort(M,3);
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will put the sorted matrix into MM and the third column of MM will be sorted in ascending
order.

cumd_norm

inv_cumd_norm

cumd_cauchy

inv_cumd_cauchy

The cumulative distribution function and the inverse cumulative distribution function
for the normal and cauchy distributions.

The random number generator class is used to manage the generation of random numbers.
A random number generator object is created with the declaration

random_number_generator r(n);

where n is the seed which initializes the random number generator. Any number of
random number generators may be declared. This class can be used to manage random
number generation with the folowing functions.

randpoisson(lambda,r); // generate a poisson with parameter lambda

randn(r); // generate a normally distributed random number

randu(r); // generate a uniformly distributed random number

v.fill_randu(r) // fill a vector v

v.fill_randn(r) // fill a vector v

v.fill_randpoisson(lambda,r) // fill a vector v

v.fill_multinomial(r,p) // fill a vector v

// p is a vector of probabilities

m.fill_randu(r) // fill a matrix m

m.fill_randn(r) // fill matrix m

m.fill_randpoisson(lambda,r) // fill a matrix m
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Chapter 9

Advanced Features of
AD Model Builder

A useful feature of C++ is its open nature. This means that the user can combine several class
libraries into one program. In general this simply involves including the necessary header
files in the program and then declaring the appropriate class instances in the program.
Instances of external classes can be declared in AD Model Builder program in several ways.
They can always be declared in the procedure or report section of the program as local
objects. It is sometimes desired to include instances of external classes in a more formal way
into an AD Model Builder program. This section describes how to include them into the
DATA SECTION or PARAMETER SECTION. After that they can be referred to as though they
were part of the AD Model Builder code (except for the technicalities to be discussed below).

AD Model Builder employs a strategy of late initialization of class members. The reason
for this is to allow time for the user too carry out any calculations which may be necessary
for determining parameter values etc. which are used in the initializatin of the object.
Because of the nature of constructors in C++ this means that every object declared in the
DATA SECTION or the PARAMETER SECTIONmust have a default constructor which takes no
arguments. The actual allocation of the object is carried out by a class member function
named allocate which takes any desired arguments. Since external classes will not generally
satisfy these requirments a different strategy is employed for these classes. A pointer to the
object is included in the appropriate AD Model Builder class. This pointer has the prefix
pad inserted before the name of the object. The pointer to myobj would have the form
pad myobj.

!!CLASSfooclass myobj( .... )

The user can refer to the object in the code simply by using its name.

The robust regression function calculates the log-likelihood function for the standard
statistical model of independent normally distributed errors with mean 0 and equal variance.
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The code is written in terms of AUTODIF objects such as dvariable and dvar vector.
They are described in the AUTODIF User’s Manual.

dvariable regression(const dvector& obs,const dvar_vector& pred)

{

double nobs=double(size_count(obs)); // get the number of

// observations

dvariable vhat=norm2(obs-pred); // sum of squared deviations

vhat/=nobs; //mean of squared deviations

return (.5*nobs*log(vhat)); //return log-likelihood value

}

The effect of a declaration depends on whether it occurs in the DATA SECTION or in the
PARAMETER SECTION. Objects declared in the DATA SECTION are constant, that is like data.
Objects declared in the PARAMETER SECTION are variable, that is like the parameters of the
model which are to be estimated. Any objects which depend on variable objects must
themselves be variables objects, that is they are declared in the PARAMETER SECTION and not
in the DATA SECTION.

In the DATA SECTION the prefix init indicates that the object is to be read in from
the data file. In the PARAMETER SECTION the prefix indicates that the object is an initial
parameter whose value will be used to calculate the value of other (non initial) parameters.
In the PARAMETER SECTION initial parameters will either have their values read in from a
parameter file or will be initialized with their default initial values. The actual default
values used can be modified in the INITIALIZATION SECTION. From a mathematical point
of view objects declared with the init prefix are independent variables which are used to
calculate the objective function being minimized.

The prefixes bounded and dev can only be used in the PARAMETER SECTION. The prefix
bounded restricts the numerical values which an object can take on to lie in a specified
bounded interval. The prefix dev can only be applied to the declaration of vector objects.
It has the effect of restricting the sum of the individual components of the vector object to
sum to 0.

The prefix sdreport can only be used in the PARAMETER SECTION. An object declared
with this prefix will appear in the covariance matrix report. This provides a convenient
method for obtaining estimates for the variance of any parameter which may be of interest.
Note that the prefixes sdreport and init can not both be applied to the same object.
There is no need to do so since initial parameters are automatically included in the standard
deviations report. AD Model Builder also has three and four dimensional arrays. They are
declared like

3darray dthree(1,10,2,20,3,10)

4darray df(1,10,2,20,3,10)

init_3darray dd(1,10,2,20,3,10) // data section only

init_4darray dxx(1,10,2,20,3,10) // data section only
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The following table contains a summary of declarations and the types of objects as-
sociatated with them in AD Model Builder. The types dvariable, dvector, dmatrix,

d3 array, dvar vector, dvar matrix, and dvar3 array are are described in the AU-
TODIF Users’s manual.
declaration type of object type of object

in DATA SECTION in PARAMETER SECTION

[init ]int int int

[init ][bounded ]number double dvariable

[init ][bounded ][dev ]vector vector of doubles(dvector) vector of dvariables(dvar vector)

[init ][bounded ]matrix matrix of doubles(dmatrix) matrix of dvariables(dvar matrix)

[init ]3darray 3 dimensional array of doubles 3 dimensional array of dvariables

4darray 4 dimensional array of doubles 4 dimensional array of dvariables

5darray 5 dimensional array of doubles 5 dimensional array of dvariables

6darray 6 dimensional array of doubles 6 dimensional array of dvariables

7darray 7 dimensional array of doubles 7 dimensional array of dvariables

sdreport number na dvariable

likeprof number na dvariable

sdreport vector na vector of dvariables(dvar vector)

sdreport matrix na matrix of dvariables(dvar matrix)

We have been told that the profile likelihood as calculated in AD Model Builder
for dependent variables may differ from that calculated by other authors. This section will
clarify what we mean by the term and motivate our calculation.

Let (x1, . . . , xn) be n independent variables, f(x1, . . . , xn) be a probability distribution
and g denote a dependent variable that is a real valued function of (x1, . . . , xn). Fix a value
g0 for g and consider the integral∫

{x:g0−ε/2≤g(x)≤g0+ε/2}
f(x1, ..., xn)

which is the probability that g(x) has a value between g0−ε/2 and g0 +ε/2. This probability
depends on two quantities, the value of f(x) and the thickness of the region being integrated
over. We approximate f(x) by its maximum value x̂(g) = maxx:g(x)=g0{f(x)}. For the
thickness we have g(x̂+h) ≈ g(x̂)+ < ∇g(x̂), h >= ε/2 where h is a vector perpendicular to
the level set of g at x̂. However ∇g is alos perpendicular to the level set so < ∇g(x̂), h >=
‖∇g(x̂)‖‖h‖ so that ‖h‖ = ε/(2‖g(x̂)‖). Thus the integral is approximated by εf(x̂)/‖∇g(x̂)‖
and taking the derivative with respect to ε yields f(x̂)/‖∇g(x̂)‖ which is the profile likelihood
exprression for a dependent variable.

Bard, Yonathan. Nonlinear Parameter Estimation. Academic Press. N.Y. 1974
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Gelman, Andrew., John B. Carlin, Hal S. Stern, and Donald B. Rubin. Bayesian Data Analysis. Chapman and Hall.

Hilborn, Ray and Carl Walters. Quantitative Fisheries Stock Assessment and Management: Choice, Dynamics, and

Uncertainty. 1992.

AD Model Builder bundled with AUTODIF is available for a wide variety of compilers on
80386 computers including Borland C++, Visual C++(32 bit) and the “GNU” C++ compiler
DJGPP Other compilers are supported at present on Linux, SUN, HP, and SGI UNIX
workstations. It is important that you tell us the exact form of your hardware and version
of your compiler for UNIX. Multi-user and site licenses are available. Contact

Otter Research Ltd

PO Box 2040,

Sidney, B.C. V8L 3S3

Canada

Voice or Fax (250)-655-3364

Email otter@otter-rsch.com

Internet: otter-rsch.com
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cosh, 8-1

current phase() function, 1-19 ,

1-28 , 1-39

data file, 1-4

default behaviour, 1-1

default file names, 1-4
default number of function

evaluations, 1-19

det, 8-3

determinant, 8-3
difference equation

explicit form, 1-21

numerical stability, 1-21

semi-implicit form, 1-21
differential equations

implicit methods, 1-15
dmatrix

sorting a, 8-10
dvector

sorting a, 8-10

eigenvalues

not differentiable, 8-4

of a symmetric matrix, 8-4
eigenvectors

not differentiable, 8-4

of a symmetric matrix, 8-4
elem div

element-wise division, 8-2
elem prod

element-wise product, 8-2

element-wise operations, 1-18

endl stream manipulator, 1-32
examples

short description of, 1-2

exp, 8-1
extract column

from a matrix, 8-8
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extract diagonal

from a matrix, 8-8
extract row

from a matrix, 8-8

extracting a subvector, 8-8
extracting data from arrays and

matrices, 8-8

fabs, 8-1
fill

filling a vector, 8-6
fill multinomial

filling a vector with random

numbers, 8-7
fill randbi

filling a vector with random

numbers, 8-7
fill randn

filling a vector with random

numbers, 8-7
fill randu

filling a vector with random

numbers, 8-7
fill seqadd

filling a vector, 8-6

filling arrays and matrices, 8-6

Financial modelling, 1-17
Fisheries catch-at-age model,

1-28

fisheries management, 1-20

fitting criterion, 1-5

five dimensional arrays, 1-37

four dimensional arrays, 1-37 ,

4-4 , 9-2

FUNCTION, 1-28 , 1-32
function

random number generator, 8-11

FUNCTION keyword, 1-28
function minimizer

default behaviour, 1-20
modifying default behaviour,

1-20
functions

++ use with vectors, 8-9

-- use with vectors, 8-9

acos, 8-1

asin, 8-1

atan, 8-1

choleski decomposition, 8-4

cos, 8-1

cosh, 8-1

determinant of a matrix, 8-3
eigenvalues of symmetric matrix,

8-4
eigenvectors of symmetric matrix,

8-4
element-wise division of

matrices, 8-2
element-wise division of vectors,

8-2
element-wise product of matrices,

8-2
element-wise product of vectors,

8-2

exp, 8-1

fabs, 8-1
filling arrays and matrices,

8-6

gammln, 8-1

inverse of a matrix, 8-3

log, 8-1

log10, 8-1

log comb, 8-1
maximum element of a vector,

8-4
minimum element of a vector,

8-4
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norm of a matrix, 8-3

norm of a vector, 8-3

norm squared of a matrix, 8-3

norm squared of a vector, 8-3

pow, 8-1

sfabs, 8-1
shift use with vectors,

sin, 8-1

sinh, 8-1
solving linear system of

equations, 8-5

sqrt, 8-1
sum over the columns of a matrix,

8-4
sum over the elements of a

vector, 8-4

tan, 8-1

tanh, 8-1
the identity matrix function,

8-2

transpose of a matrix, 8-3

gamma function

logarithm of, 8-1

gammln, 8-1

GARCH Model, 1-17

GLOBALS SECTION, 1-38
gradient structure::set ARRAY -

MEMBLOCK SIZE, 1-38

the correct way to set, 4-8
gradient structure::set CMPDIF -

BUFFER SIZE, 1-38
gradient structure::set GRADSTACK -

BUFFER SIZE, 1-38 , 4-8
gradient structure::set MAX NUM -

DEPENDENT VARIABLES, 1-38
gradient structure::set MAX NVAR -

OFFSET, 1-38

Hastings-Metropolis algorithm,

1-2

init bounded dev vector, 1-22

init bounded number, 1-11 ,

1-18 , 1-25

init bounded vector, 1-22

INITIALIZATION SECTION, 9-2
input

changing the default file names,

1-36

inverse, 8-3

Kalman filter, 6-1

Laplace approximation, 7-2

in Kalman filter, 7-2

last phase() function, 1-19

least squares, 1-3

likeprof number, 1-32

LOCAL CALCS, 1-36
use instead of the PRELIMINARY -

CALCS SECTION, 1-6

log, 8-1

log10, 8-1

log comb, 8-1

log comb function, 8-2

Markov chain simulation

Hastings-Metropolis algorithm,

1-2
to estimate the posterior

distribution, 1-2
matrix

colfill, 8-6

colfill randu, 8-7
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colfill seqadd, 8-6

colsum of, 8-4

column, 8-8

element-wise division, 8-2

element-wise product of, 8-2

extract column, 8-8

extract row, 8-8

rowfill, 8-6

rowfill randn, 8-7

rowfill randu, 8-7

rowfill seqadd, 8-6

rowsum of, 8-4

the determinant of, 8-3
the identity matrix function,

8-2

the inverse of, 8-3

the norm of, 8-3

the norm squared of, 8-3
matrix objects

accessing elements of, 1-7
max

operation on a vector, 8-1 ,

8-4

mceval phase(), 2-2
min

operation on a vector, 8-1 ,

8-4
minimization

phases, 1-25 , 1-27

multi-phase minimization, 1-11 ,

1-19 , 1-25 , 1-27
multivariate normal distribution

calculation of the log-likelihood

function for, 8-5

nonlinear regression, 1-2

norm, 8-3

numerical integration, 3-1

objective function value, 1-5

operator (), 8-8 , 8-10

operator ++, 8-9

for dvectors, 8-9

use with subvectors, 8-9
used to increment the valid index

bounds, 1-37

operator --, 8-9

for dvectors, 8-9

use with subvectors, 8-9
used to decrement the valid index

bounds, 1-37
optimization

phases, 1-20 , 1-25
optimizing performance

using the best operators for a

calculation, 8-5

output files, 1-7

PARAMETER SECTION, 1-5

pow, 8-1

PRELIMINARY CALCS SECTION, 1-6 ,

1-35

PROCEDURE SECTION, 1-28

profile likelihood, 1-32

confidence limits, 1-32

set stepnumber option, 1-35

set stepsize option, 1-35
putting bounds on initial parameters,

1-11 , 1-18

random number generator

class, 8-11
regression
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nonlinear, 1-2

robust, 1-2
REPORT SECTION

example of, 1-32 , 4-8

robust Kalman filter, 7-2

robust regression, 1-2 , 1-8
rowfill

filling a matrix row with a

vector, 8-6
rowfill randn

filling a matrix with random

numbers, 8-7
rowfill randu

filling a matrix with random

numbers, 8-7
rowfill seqadd

filling a matrix, 8-6
rowsum

operation on a matrix, 8-4

RUNTIME SECTION, 1-20

Schaeffer -- Pella-Tomlinson model,

1-20

Bayesian considerations, 1-21

optimal productivity, 1-21
unfished equilibrium biomass

level, 1-21

sd phase() function, 1-19

sdreport matrix, 1-22 , 2-2

sdreport number, 1-22 , 2-2

sdreport vector, 1-22 , 2-2
SECTIONS

DATA SECTION, 1-4

GLOBALS SECTION, 1-38
PARAMETER SECTION,

PRELIMINARY CALCS SECTION,

1-6

PROCEDURE SECTION, 1-4

REPORT SECTION, 1-32

RUNTIME SECTION, 1-20

BETWEEN PHASES SECTION, 1-38
PRELIMINARY CALCS SECTION,

1-35

set stepnumber, 1-35

set stepsize, 1-35

seven dimensional arrays, 1-37

sfabs, 8-1

simple example, 1-3

sin, 8-1

sinh, 8-1

six dimensional arrays, 1-37 ,

4-4

solve function, 8-5
Solving a system of linear equations,

8-5

sorting, 8-10

dmatrix, 8-10

dvector, 8-10

sqrt, 8-1

standard deviation report, 1-18

standard deviations report, 1-8

STD, 1-8

state space form, 6-1

stochastic volatility model, 7-3

SUBROUTINE, 1-28
subvector operation

avoiding loops with, 1-36

examples of, 1-36
subvectors

using to remove loops from code,

8-9
sum

operation on a vector, 8-4
symmetric matrix

choleski decomposition, 8-4
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syntax rules, 1-6

tan, 8-1

tanh, 8-1

template, 1-1 , 1-3

template sections, 1-3

The GLOBALS SECTION, 4-8

three dimensional arrays, 1-37 ,

4-4 , 9-2
time series

GARCH Model, 1-17

TOP OF MAIN section, 1-38 ,

4-8

use of vector and matrix

calculations, 1-6

use of regression function, 1-6
USER CODE

adding a line of the users code,

1-36

vector

element-wise division, 8-2

element-wise product of, 8-2

extracting a subvector, 8-8

fill, 8-6

fill multinomial, 8-7

fill randbi, 8-7

fill randn, 8-7

fill randu, 8-7

fill seqadd, 8-6
function call () to extract

subvector, 8-8

maximum element of, 8-1 ,

8-4

minimum element of, 8-1 ,

8-4

sum over the elements of, 8-4

the norm of, 8-3

the norm squared of, 8-3

vector operations, 1-18
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